![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
|
15. Необходимые и достаточные условия экстремума функции нескольких переменных.
Пусть
определена на открытом множестве
.
- точка в D.
ОПР. Говорят, что у = f(x) имеет в точке
локальный минимум, если
для всех
из некоторой окрестности
.
Если для всех
из данной окрестности выполнено
, то говорят, что в точке
функция у = f(x) имеет строгий локальный минимум.
Функция f(x) имеет в
локальный экстремум, если она имеет в этой точке либо локальный минимум, либо локальный максимум.
ТЕОРЕМА (Необходимое условие) Пусть
- функция п переменных, определенная в области
и имеющая там частные производные первого порядка. Если
является точкой локального экстремума функции f, то
, для всех i = 1,…,n (1)
Доказательство. Рассмотрим функцию одной переменной
Данная функция имеет при
локальный экстремум и по соответствующей теореме для одномерного случая можем записать:
, т.е. 
Рассуждая так при любом фиксированном i = 2,…,n убеждаемся в справедливости системы равенств (1). Теорема доказана.
Обозначим через
- квадратичную форму.
ТЕОРЕМА (Достаточное условие) Пусть у = f(x) - трижды непрерывно дифференцируемая на открытом множестве
функция и
- ее критическая точка. Если в этой точке
, то f имеет в
локальный минимум. Если
является в этой точке неопределенной квадратичной формой, то f не имеет в
локального экстремума
Доказательство.
На основании формулы Тейлора имеем:

В качестве первого шага оценим остаточный член в тейлоровском разложении. Мы имеем

Так как производные третьего порядка непрерывны, то найдутся постоянные А>0 и
>0 такие, что
и 
Поэтому, выбирая
, будем иметь
и, следовательно,

Здесь использовано следующее неравенство:
.
Тем самым,
и
(1)
Сделаем второй шаг. Предположим, что квадратичная форма
в
. Рассматривая ее как функцию переменной
на единичной сфере |dx| = 1 и, пользуясь теоремой Вейерштрасса о достижимости точной нижней грани непрерывной функции на замкнутом ограниченном множестве, заключаем, что:
для всех dx,
, где
.
Для произвольного dx имеем:
, а потому:
, откуда:
.
Пользуясь Тейлоровским разложением для
и учитывая вид (1) остаточного члена, получаем:
(
)
Тем самым, для всех достаточно малых
выполнено
и
- точка локального минимума.
Шаг третий. Пусть
в точке
. Тогда квадратичная форма
, построенная для функции y=--f(x), является положительно определенной. Действительно, мы имеем: 
Поэтому функция y=-f(x) имеет в
локальный минимум, а функция y=f(x) – локальный максимум.
4-й шаг. Докажем последнее из вышесказанной теоремы. Пусть
не определена, т.е. существую n-мерные векторы
и
такие, что:
и
.
Рассмотрим ф-цию вещественного переменного:
и
.
При всех достаточно малых t точки
и
принадлежат множеству D, а потому функции
и
определены, по крайней мере, при достаточно малых t. По теореме о дифференцировании сложной функции эти функции трижды непрерывно дифференцируемы по t. Мы имеем:
,


Т.к.
- критическая точка, то:
и
, а 
Аналогично:
и 
Таким образом, функция
имеет при t = 0 локальный минимум,
- локальный максимум. Отсюда заключаем, что в любой окрестности точки х0 найдутся точки
и
такие, что
и 
Тем самым,
не является точкой локального экстремума и теорема доказана.
Дата публикования: 2015-01-26; Прочитано: 281 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!
