![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
|
/*Обозначение Δ-треугольник. 
Пусть на плоскости
с декартовыми координатами (x,y) заданы кривая j, тюе образю вектор-функции:

Которая является взаимно-однозначной и непрерывной. Будем считать, что кривая j является спрямляемой. Рассмотрим разбиение отрезка [a,b] точками a=
=b. обозначим через
.
-дуга кривой j, расположенная между
и
. Длина дуги обозначим через
На каждой дуге
выберем произвольную точку A
.*/
Пусть задана кривая γ на плоскости. Будем говорить, что γ ориентирована, если определено начало кривой и конец. Пусть A-начало γ, B-конец. Составим интегральные суммы:
, Δ
= 
, Δ
=
где
координаты точки 
Определение. Если
,
, независящий от выбора разбиения кривой γ, то функция f называется интегрируемой по кривой, а значения таких пределов называют криволинейными интегралами 2-го рода и обозначают:

Если заданы функции P(x,y), Q(x,y) на кривой γ, то выражение
,также называется интегралом второго рода.
Замечание. Справедливо следующее свойство. Пусть AB-кривая γ с началом в точке А и концом в точке В, а ВА –кривая γ с началом в точке В и конец А. Тогда
.
Теорема. Пусть кривая γ задана вектор-функцией
, где
а функция f(x,y) непрерывна на γ. Пусть, кроме того,
1)функции
непр. диф-мы на [a,b].
2)
!= 0 
Если (φ(a),ψ(b))=A, (φ(b),ψ(b))=B, то
Тогда
.
Доказательство. Обозначим
. Зафиксируем
.Тогда существует
,такое, что для всех разбиений Р отрезка [a,b] a=
=b, для которых
μ(Р)=
<δ и всех точек
выполнено неравенство
,
Где Δ 
Отметим что функция
, является непр. на [a,b], то она равномерно непрерывна на [a,b].Следовательно,
, так что
|
|<
, выполнено
. Рассмотрим разбиение
, для которого
. Тогда:

+ 
≤ 
По теореме Лагранжа о конечных приращениях
, так что
.
Тогда используя |
|<
получаем

≤
≤ 
Таким образом существует 
Что и доказывает утверждение теоремы.
Дата публикования: 2015-01-26; Прочитано: 280 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!
