Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Линии на плоскости



Этот параграф представляет собой раздел математики, который называется аналитической геометрией. Аналитическая геометрия является разделом геометрии, в котором геометрические объекты исследуются методом координат. Важнейшим понятием аналитической геометрии является уравнение линии (кривой). Аналитическая геометрия решает две взаимно обратные задачи: по заданным геометрическим свойствам кривой требуется составить ее уравнение в заданной системе координат; по заданному уравнению кривой требуется выяснить ее геометрические свойства (форму).

Пусть на плоскости задана декартовая система координат. Рассмотрим уравнение вида

F(x, y) = 0,

где F(x, y) некоторое выражение, содержащее две переменные.

Такое уравнение определяет (задает) линию L в системе координат Оху. Вообще говоря, линии на координатной плоскости могут быть самыми различными и являются графиками одной или нескольких функций.

Линии первого порядка. К линиям первого порядка относятся те линии, для которых задающее их уравнение содержит переменные x и у только в первой степени. Иными словами, такие линии описываются уравнениями вида

,

где А, В и С — постоянные числа. В аналитической геометрии доказывается, что это уравнение является уравнением некоторой прямой линии на плоскости, т.е. уравнением, связывающим координаты x и y точек прямой. И наоборот, координаты точек любой прямой на плоскости удовлетворяют такому уравнению. Это уравнение называется общим уравнением прямой.

Из общего уравнения прямой можно выразить переменную у как функцию от аргумента х при В ≠ 0 и получить

Такое уравнение называют уравнением прямой с угловым ко­эффициентом , где φ — угол наклона прямой к положительному направлению оси Ох.

Существуют и другие уравнения прямой линии. Во-первых, это уравнение прямой с заданным угловым коэффициентом k, проходящей через заданную точку М0(x0, у0):

Во- вторых, это уравнение прямой, проходящей через две заданные точки на плоскости M1(x1, y1) и М22, у2):

Рассмотрим две прямые, заданные уравнениями и , где и . Пусть угол между этими прямыми. Тогда и мы получаем или

Эта формула определяет один из углов между пересекающимися прямыми; второй угол равен (рис. 16). Откуда вытекают условия параллельности и перпендикулярности прямых. В самом деле, если прямые параллельны, то

;

а если прямые перпендикулярны, то , откуда , или окончательно

.

Рис. 16.





Дата публикования: 2015-01-23; Прочитано: 217 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...