Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Логарифмическая функция. Определение 1. Функция, обратная к показательной функции , называется логарифмической функцией и обозначается



Определение 1. Функция, обратная к показательной функции , называется логарифмической функцией и обозначается .

Заметим, что данное определение корректно, т.е. логарифмическая функция существует в силу строгой монотонности показательной функции при по теореме о существовании и непрерывности обратной функции.

Если и , то логарифмы называют десятичными и натуральными и обозначают и соответственно.

Из свойств взаимно-обратных функций следует, что . Логарифмическая функция не является ни четной, ни нечетной. Непериодическая. По теореме о существовании и непрерывности обратной функции она непрерывна в области определения, то есть точек разрыва не имеет, при строго возрастает от до , при строго убывает от до , поэтому точек экстремума не имеет. поэтому – вертикальная асимптота. наклонных асимптот нет. горизонтальных асимптот нет. , так как , то есть точка (1; 0) – точка пересечения графика с осью , с осью Оу пересечения нет, так как . на и на (0; 1) при , а при на (0; 1) и на . точек перегиба нет. Если , то и кривая выпукла вверх в , если , то и кривая выпукла вниз в .

Заметим, что в силу свойства графиков взаимно-обратных функций кривые и симметричны относительно прямой .

у

О 1 х

Справедливы следующие свойства логарифмов, известные из школьного курса математики:

1. .

2. .

3. , где , а также формула перехода от одного основания логарифма к другому

.





Дата публикования: 2015-01-23; Прочитано: 202 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.005 с)...