![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Необходимые условия экстремума. Предположим сначала, что функция дифференцируема на
. Если в точке
функция имеет экстремум, то, применяя к промежутку
теорему Ферма, заключаем, что
. Это необходимое условие экстремума, т.е. экстремум следует искать только в тех точках, где производная равна нулю. Такие точки называются стационарными.
Если допустить, что экстремум может быть в точках, где производная не существует, то не исключена возможность, что экстремум придется на какую-либо из таких точек.
Таким образом, в общем случае для того, чтобы в точке функция имела экстремум, необходимо, чтобы в этой точке производная либо не существовала, либо была равна нулю. Такие точки называют критическими.
Отметим, что каждая точка, в которой функция имеет экстремум, является критической. Однако, не в каждой критической точке есть экстремум.
Например. Для функции
;
, однако в точке
эта функция экстремума не имеет (рис.10)
х |
у |
-1 |
-1 |
Рис. 10
Заметим, что возрастание или убывание функции на некотором интервале определяется знаком ее производной на этом интервале. Имеет место следующее утверждение:
1) если функция , имеющая производную на отрезке
, возрастает на этом отрезке, то ее производная на отрезке
неотрицательна, т.е.
; если же
убывает на отрезке
, то
на этом отрезке.
2) если функция непрерывна на отрезке
и дифференцируема внутри него, причем
для
, то эта функция возрастает на отрезке
; если же
на интервале
, то
убывает на отрезке
.
Интервалы, на которых функция либо только убывает, либо только возрастает, называются интервалами монотонности функции.
Пример. Найти интервалы возрастания и убывания функции .
Решение. Функция определена и непрерывна на всей числовой оси. Найдем ее производную.
Следовательно, . Отсюда имеем три интервала монотонности данной функции:
. Определим знак производной в каждом интервале и характер поведения функции на нём.
на интервале
функция возрастает;
на интервале
функция убывает;
на интервале
функция возрастает;
+ - + |
![]() |
![]() |
Дата публикования: 2015-02-18; Прочитано: 202 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!