![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
|
В теореме Ферма по сути дела два ограничения: а) точка
расположена внутри отрезка
и б)
. Покажем, что оба ограничения являются существенными, то есть отказ от любого из них приводит к тому, что утверждение теоремы становится неверным.
а) «внутренность» точки
.
| Если максимум или минимум функции достигается на границе отрезка, то, как видно из рисунка, утверждение теоремы Ферма неверно. При доказательстве это проявляется в том, что мы сможем подойти к точке только с одной стороны, и поэтому не получится второго, противоположного неравенства.
|
б) существование производной.
| Пусть в точке существуют только односторонние производные. Тогда, как это видно из рисунка, теорема Ферма неверна. При доказательстве это проявиться в том, что получаться неравенства и , которые нельзя будет объединить в одно равенство, так как теперь .
|
Дата публикования: 2015-01-23; Прочитано: 184 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!
