Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Теоремы о функциях, имеющих производную



Теорема Ферма

Теорема. Пусть функция определена и непрерывна на промежутке и в некоторой внутренней точке этого промежутка достигает своего наибольшего или наименьшего значения. Если в этой точке существует производная, то она равна нулю:.

Доказательство

Пусть, для определенности, в точке функция достигает своего наибольшего значения.

По условию теоремы эта точка внутренняя, то есть , и поэтому к этой точке можно подойти и слева и справа.

Пусть мы подходим к слева. Тогда

(так как - наибольшее значение);

;

(так как мы подходим слева);

;

.

Делая предельный переход , получим

.

Пусть мы подходим к точке справа. Тогда

(так как - наибольшее значение);

;

(так как мы подходим слева);

;

.

Делая предельный переход , получим

.

Совместить два полученных неравенства можно только в одном случае: . <

Геометрический смысл доказанной теоремы ясен из рисунка: в точке наиболь­шего или наименьшего значения функции касательная к графику функции параллельна оси OX.  




Дата публикования: 2015-01-23; Прочитано: 160 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...