![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
|
Рассмотрим следующую задачу: построить квадратурную формулу
, (3.1)
которая при заданном n была бы точна для алгебраического многочлена возможно большей степени.
Такие квадратурные формулы называются квадратурными формулами наивысшей алгебраической степени точности или формулами Гаусса. Эти формулы точны для любого алгебраического многочлена степени 2 n -1.
Потребуем, чтобы квадратурная формула (3.1) была точна для любого алгебраического многочлена степени m. Это эквивалентно требованию, чтобы формула была точна для функции
. Отсюда получаем условия
(3.2)
Они представляют собой нелинейную систему
уравнений относительно
неизвестных
. Для того чтобы число уравнений равнялось числу неизвестных, надо потребовать
.
Пример 1. Пусть
, a =-1, b =1, n =1, m =1. Система (3.1) принимает вид

т.е. приходим к формуле прямоугольников:
, которая точна для любого многочлена первой степени.
Пример 2. При n =2, m =3 система (3.2) записывается в виде

Отсюда находим
,
, т.е. получаем квадратурную формулу
, которая точна для любого многочлена третьей степени.
Введем многочлен
(3.3)
Будем предполагать, что
.
Теорема 3.1. Квадратурная формула (3.1) точна для любого многочлена степени
тогда и только тогда, когда выполнены два условия:
1. многочлен
ортогонален с весом
любому многочлену
степени меньше n, т.е.
(3.4)
2. Формула (3.1) является квадратурной формулой интерполяционного типа, т.е.
(3.5)
Условие (3.4) эквивалентно требованиям
, (3.6)
которые представляют собой систему n уравнений относительно n, неизвестных
.
Таким образом, для построения формул Гаусса достаточно найти узлы
из соотношений ортогональности (3.6) и затем вычислить коэффициенты
согласно (3.5).
Теорема 3.2. Если
- многочлен степени n, ортогональный на
с весом
любому многочлену степени меньше n, то все его корни различны и расположены на
.
Из теорем 3.1 и 3.2 следует, что для любого n существует, притом единственная квадратурная формула, точная для любого многочлена степени 2 n -1.
Для погрешности формулы Гаусса справедливо представление
, (3.7)
где
.
Рассмотрим частный случай:
Пусть
. В этом случае в качестве узлов
берутся нули многочлена Лежандра:
(3.8)
Свойства многочлена Лежандра:
1°. 
2°.
,
- полином степени k.
3°.
имеет n различных действительных корней принадлежащих интервалу
.
Коэффициенты квадратурной формулы
находятся из линейной системы:
(3.9)
Вычисления интеграла
ведутся по следующим формулам
(3.10)
где
(3.11)
- нули многочлена Лежандра.
Дата публикования: 2015-01-23; Прочитано: 289 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!
