Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Важнейшие непрерывные СВ



\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

1. Равномерная случайная величина.

Говорят, что непрерывная случайная величина имеет равномерный закон распределения (равномерное распределение) на отрезке , если множество ее возможных значений , а плотность вероятностей постоянна на этом отрезке:

Константа С при этом однозначно определяется из условия нормировки:

, то есть .

Таким образом, равномерно распределенная случайная величина имеет плотность вероятностей:

и для нее используется сокращенное обозначение: .

Найдем функцию распределения случайной величины .

Для этого рассмотрим три случая:

а) если , то ;

б) если ,то ;

в) если , то .

Окончательно имеем: и

Графики плотности вероятностей и функции распределения случайной величины имеют вид:

2. Показательная (экспоненциальная) случайная величина.

Говорят, что непрерывная случайная величина имеет показательный закон распределения (показательное, экспоненциальное распределение), если множество ее возможных значений , а плотность вероятностей имеет вид:

Число называется параметром показательного закона распределения, а для показательной случайной величины используется сокращенное обозначение: .

Проверим условие нормировки: при любом .

Найдем функцию распределения случайной величины .

Для этого рассмотрим два случая:

а) если , то ;

в) если , то .

Окончательно имеем:

Графики плотности вероятностей и функции распределения случайной величины имеют вид:

3. Нормальная (гауссовская) случайная величина.

Говорят, что непрерывная случайная величина имеет нормальный закон распределения (нормальное, гауссовское распределение) с параметрами , если множество ее возможных значений , а плотность вероятностей имеет вид:

.

Сокращенное обозначение нормальной случайной величины:

.

Кривая плотности вероятностей имеет симметричный вид относительно прямой и имеет максимум в точке .

Проверим условие нормировки:

для любых значений параметров а и (при этом использовался известный в анализе факт, что - интеграл Пуассона).

5. Случайная величина, имеющая закон распределения Коши.

Говорят, что непрерывная случайная величина имеет закон распределения Коши, если множество ее возможных значений , а плотность вероятностей имеет вид:

.

Функция распределения случайной величины, распределенной по закону Коши, имеет вид:

.

Графики плотности вероятностей и функции распределения случайной величины, распределенной по закону Коши, выглядят следующим образом:

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\





Дата публикования: 2015-02-03; Прочитано: 316 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...