Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Понятия числового ряда, его суммы. Сходящиеся и расходящиеся числовые ряды. Необходимое условие сходимости числового ряда. Действия с числовыми рядами



Числовой ряд — это числовая последовательность, рассматриваемая вместе с другой последовательностью, которая называется последовательностью частичных сумм (ряда).

Рассматриваются числовые ряды двух видов

§ вещественные числовые ряды — изучаются в математическом анализе;

§ комплексные числовые ряды — изучаются в комплексном анализе;

Важнейший вопрос исследования числовых рядов — это сходимость числовых рядов.

Числовые ряды применяются в качестве системы приближений к числам.

Определение

Пусть — числовая последовательность; рассмотрим наравне с данной последовательностью последовательность

каждый элемент которой представляет собой сумму некоторых членов исходной последовательности. В наиболее простом случае используются обычные частичные суммы вида

Вообще, для обозначения ряда используется символ

поскольку здесь указана исходная последовательность элементов ряда, а также правило суммирования.

В соответствии с этим говорится о сходимости числового ряда:

§ числовой ряд сходится, если сходится последовательность его частичных сумм;

§ числовой ряд расходится, если расходится последовательность его частичных сумм:

§ числовой ряд сходится абсолютно, если сходится ряд из модулей его членов.

Если числовой ряд сходится, то предел последовательности его частичных сумм носит название суммы ряда:

Операции над рядами

Пусть заданы сходящиеся ряды и . Тогда:

§ Их суммой называется ряд

§ Их произведением по Коши называется ряд , где

Если оба ряда сходятся, то их сумма сходится, если оба ряда сходятся абсолютно, то их сумма сходится абсолютно. Если хотя бы один из рядов сходится абсолютно, то произведение рядов сходится.

Сумма числового ряда определяется как предел, к которому стремятся суммы первых n слагаемых ряда, когда n неограниченно растёт. Если такой предел существует и конечен, то говорят, что ряд сходится, в противном случае — что он расходится[1]. Элементы ряда представляют собой либовещественные, либо комплексные числа.

Определение

Пусть — числовой ряд. Число называется n -ой частичной суммой ряда .

Сумма (числового) ряда — это предел частичных сумм , если он существует и конечен. Таким образом, если существует число , то в этом случае пишут . Такой ряд называется сходящимся. Если предел частичных сумм не существует или бесконечен, то ряд называется расходящимся.

Сходимость числовых рядов

Свойство 1. Если ряд

(1.1)

сходится и его сумма равна S, то ряд

(1.2)

где c — произвольное число, также сходится и его сумма равна cS. Если же ряд (1.1) расходится и с ≠ 0, то ряд расходится.

Свойство 2. Если сходится ряд (1.1) и сходится ряд

,

а их суммы равны и соответственно, то сходятся и ряды

,

причём сумма каждого равна соответственно .

Необходимый признак сходимости ряда

Ряд может сходиться лишь в том случае, когда член (общий член ряда) стремится к нулю:

Это необходимый признак сходимости ряда (но не достаточный!). Если же общий член ряда не стремится к нулю — это достаточный признак расходимости.

43. Числовые ряды с неотрицательными членами, их свойства. Критерий сходимости, достаточные признаки сходимости числовых рядов: признаки сравнения, признак Даламбера, радикальный признак Коши, интегральный признак Коши. Гармонический ряд.

Ряды с неотрицательными членами

При изучении знакопостоянных рядов ограничимся рассмотрением рядов с неотрицательными членами, т.к. при простом умножении на –1 из этих рядов можно получить ряды с отрицательными членами.

Теорема. Для сходимости ряда с неотрицательными членами необходимо и достаточно, чтобы частные суммы ряда были ограничены.

Признак сравнения рядов с неотрицательными членами.

Пусть даны два ряда и при un, vn ³ 0.

Теорема. Если un £ vn при любом n, то из сходимости ряда следует сходимость ряда , а из расходимости ряда следует расходимость ряда .

Доказательство. Обозначим через Sn и sn частные суммы рядов и . Т.к. по условию теоремы ряд сходится, то его частные суммы ограничены, т.е. при всех n sn < M, где М – некоторое число. Но т.к. un £ vn, то Sn £ sn то частные суммы ряда тоже ограничены, а этого достаточно для сходимости.

Признак сравнения

Если то из сходимости ряда следует сходимость ряда , а из расходимости ряда - расходимость ряда Предельный признак сравнения

Если то при ряды и или оба сходятся, или оба расходятся; при l = 0 из сходимости ряда следует сходимость ряда ; при из расходимости ряда следует расходимость ряда . В частности, если при то ряды и или оба сходятся, или оба расходятся.

Признак Даламбера — признак сходимости числовых рядов, установлен Жаном д’Аламбером в 1768 г.

Если для числового ряда

существует такое число , , что начиная с некоторого номера выполняется неравенство

то данный ряд абсолютно сходится; если же, начиная с некоторого номера

то ряд расходится.

Замечание. Среди математиков распространено заблуждение, что "Смех без причины - признак Даламбера". Это не так.





Дата публикования: 2015-01-26; Прочитано: 1220 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...