![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Определение 1. Пусть X – какое-либо множество и N – множество натуральных чисел. Всякое отображение называется последовательностью элементов множества X. Элемент
обозначается через
и называется n-м членом последовательности
, а сама эта последовательность обозначается через
или
, n=1,2,….
Примеры. ,
.
Определение 2. Постоянное число называется пределом последовательности
, если для каждого положительного числа
, сколь бы мало оно ни было, существует такой номер
, что все значения
, у которых номер
, удовлетворяют неравенству
. (1)
Тот факт, что является пределом последовательности, записывают так:
.
Неравенство (1) равносильно следующим:
(2)
Если изобразить числа и значения
последовательности точками на числовой оси, то получится наглядное геометрическое истолкование предела последовательности. Какой бы малый отрезок (длины
) с центром в точке
ни взять, все точки
, начиная с некоторой из них, должны попасть внутрь этого отрезка (так что вне его может остаться разве лишь конечное число этих точек).
Некоторые последовательности, стремящиеся к пределу. Следующие шесть последовательностей имеют предел, равный числу 0. Ниже мы докажем это.
: 0,0,0,0,0,0,0,…
:
:
:
:
:
запишем 8 первых элементов каждой из последовательностей.
Дата публикования: 2015-01-10; Прочитано: 382 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!