Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Доведення



Доведемо першу властивість, а друга доводиться аналогічно.

Нехай і розв’язки системи (1). Треба визначити, чи є розв’язком системи (1).

Розглянемо систему в вигляді (1’). Тоді з означення розв’язку, маємо системи правильних числових рівностей:

(2)

(3)

Підставимо в ліву частину системи (1’) – замість .

Отже єрозв’язком системи (1).

З доведених властивостей випливає.

Наслідок. Будь-яка лінійна комбінація будь-яких розв’язків однорідної системи є також розв’язком цієї системи.

Введемо важливе для однорідної системи поняття фундаментальної системи розв’язків.

Означення. Максимальна лінійно незалежна система розв’язків однорідної системи рівнянь називається її фундаментальною системою.

З цього означення випливає, що фундаментальна система розв’язків задовольняє дві умови:

1) розв’язки, що входять до фундаментальної системи – лінійно незалежні;

2) будь-який інший розв’язок є лінійною комбінацією цих розв’язків.

З’ясуємо скільки розв’язків входить до фундаментальної системи.

Розв’язок системи лінійних алгебраїчних рівнянь можна розглядати як вектор n-вимірного арифметичного простору. Раніше було доведено, що в n-вимірному арифметичному просторі найбільша кількість лінійно-незалежних векторів містить n-векторів. Отже маємо попередній висновок: фундаментальна система розв’язків містить не більше n розв’язків. Більш точну інформацію містить наступна теорема.

Теорема. (про фундаментальну систему розв’язків)

Якщо ранг p матриці A менше кількості невідомих n, то однорідна система рівнянь має фундаментальну систему розв’язків, причому кількість розв’язків, що входить до фундаментальної системи дорівнює n-p.

Доведення. Нехай задано однорідну систему рівнянь

(1)

Нехай ранг матриці

= p.

Тоді кількість фундаментальних розв’язків (n-p). З того, що ранг rA=p<n випливає, що система (1) невизначена, тобто має безліч розв’язків.

Запишимо всі розв’язки в вигляді (**)

, (**)

(зробивши попередньо для системи (1) припущення, при яких було отримано (**)).

Виберемо з цієї нескінченної множини розв’язків, (n-р) розв’язков за таким правилом:

1. Надамо вільним невідомим значення

Підставимо ці значення в формулу (**), отримаємо значення для

.

2. Надамо вільним невідомим другий раз інші значення . Підставимо в (**), отримаємо другий розв’язок.

….

Надамо вільним невідомим (n-p) раз значення .

Підставимо їх в (**), отримаємо

Отже ми отримали систему розв’язків:

1-ий розв’язок ()

2-ий розв’язок () (2)

() розв’язок ()

Зауважимо, що вільні невідомі в розв’язках (2) вибирались будь-як, але за однією умовою

(3)

Доведемо, що система розв’язків (2) є фундаментальною.

Для цього ми повинні довести, що:

1. Розв’язки (2) лінійно незалежні.

2. Приєднання до (2) будь-якого розв’язку системи приводить до лінійно залежної системи.

Для доведення першого пункту розглянемо матрицю К:

1. Доведемо rK=n-p. Це випливає з того що в цій матриці за умовою (3) є мінор порядку (n – p), що не дорівнює нулю. Мінорів більш високого порядку не можна скласти. Тоді з теореми про ранг матриці rK = n – p.

З того, що rK = n – p, використовуючи другий наслідок з теореми про ранг випливає, що в матриці К є лише (n – p) лінійно незалежних рядків. А в рядках записано розв’язки (2), тобто вони лінійно незалежні.

2. Для доведення другого пункту розглянемо довільний розв’язок системи (1) . Приєднаємо його до системи розв’язків (2) і доведемо, що отримана система розв’язків вже лінійно залежна. Для цього утворимо матрицю :

.

Доведемо, що ранг і цієї матриці дорівнює r = n – p.

Доведемо, що в цій матриці лише (n – p) лінійно незалежних стовпців. Саме з цього тоді випливатиме, що r = n – p. З того, що мінор в правому верхньому куту не дорівнює нулю, випливає, що останнні (n – p) стовпців матриці лінійно незалежні. Доведення цього факту таке ж саме як і в першій частині про ранг.

Доведемо, що перший, другий, і т.д. р-ий стовпчик матриці є лінійною комбінацією останніх (n – p) стовпців. Це твердження випливає з формули (**).

Насправді, в першому стовпчику матриці записано значення для x1, в другому для x2, і т.д., в n-ому стовпчику – для xn. Зформули ж (**) випливає, що x1,…,xp єлінійною комбінацією xp+1,…,xn.

Тобто в матриці – лінійно незалежними є лише останні (n-p)стовпців. Таким чином максимальна лінійно незалежна система розв’язків (ФСР) складається з (n-p) розв’язків.

Теорему доведено.

Зауваження. Якщо rА = р = n, то в цьому випадку система визначена, має один тривіальний розв’язок, а система з одного нульововго вектора лінійно залежна, тому фундаментальної системи розв’язків немає.

Розглянемо множину розв’язків однородної системи з точки зору векторного простору. Множина розв’язків однорідної системи є підмножиною n-вимірного арифметичного простру. Більш того з властивостей розв’язків однорідної системи випливає, що в цій підмножині визначені операції додавання векторів і множення вектора на число. Тоді як випливає з попереднього множина усіх розв’язків однорідної системи є підпростором арифметичного простору. Базисом цього підпростору є фундаментальна система розв’язків. З тереми про фундаментальну систему випливає, що вимірність цього підпростору дорівнює n-r (n – кількість невідомих, r – ранг матриці системи).





Дата публикования: 2014-11-18; Прочитано: 674 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...