![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
|
Простором елементарних подій неперервної випадкової величини є всі числа числової осі чи відрізок (відрізки) числової осі.
Як розглядалось в прикладі (кидання навмання голки в пів інтервал
) ймовірність будь-якого числа, яке теоретично може настати в результаті випробування тотожно рівна 0. Таким чином виникає ситуація, коли з’являються елементарні чи складні події, що мають ймовірність настання 0, а теоретично можуть настати, і навпаки: є події, які мають ймовірність наставання 1, а теоретично можуть не настати. (Наприклад, від всіх чисел числової осі викинути всі раціональні числа).
Всі граничні теореми теорії ймовірностей і деякі просто результати гарантуються з ймовірністю 1, чи їх не наставання з ймовірністю 0. Як розв’язати це протиріччя між математичною теорією ймовірностей і інженерним трактуванням?
, 

Як і для будь-якої випадкової величини, так і для неперервної випадкової величини
функція розподілу.
її властивості збігаються з властивостями для дискретної випадкової величини, крім однієї: функція розподілу неперервної випадкової величини є неперервною функцією. Таким чином, якщо випадкова величина є неперервною, то нульова ймовірність наставання може бути лише у складних подій, що є нескінченно незліченою множиною чисел.

Неперервна випадкова велична зветься абсолютно неперервною (далі в курсі просто неперервною), якщо існує така числова скалярна функція дійсного аргументу
, що належить класу неперервних функцій чи кусково-неперервних з обмеженою кількістю розривів І роду, яка задовольняє наступну інтегральну рівність:

Ця функція
зветься функцією щільності (функцією густини). Прикладом неперервної випадкової величини, що не є абсолютно неперервною є сума неперервної випадкової величині і дискретної випадкової величини.
Властивості функції щільності
1) 
2)
, тому що функція розподілу є монотонно неспадна.
3) Нехай на відрізку
функція щільності є неперервною функцією, тоді рівність
еквівалентна
, в тих точках, в яких ця похідна існує.
4) Якщо існує похідна від функції розподілу, то має місце наступна рівність:

Доведення:
(використана відповідна властивість функції розподілу) 
Примітка! В цьому виразі в якості
не лівий кінець цього відрізка, а будь-яке число цього відрізка. При цьому зміниться лише конкретний вигляд нескінченно-малої функції 
Приклади неперервних випадкових величин:
1) Рівномірний розподіл.
Неперервна випадкова величина
рівномірно розподілена на відрізку
, якщо ї функція щільності наступна:

.
Знайдемо константу 



2) Експонційний розподіл

Самостійно перевірити, що 
Математичне сподівання від неперервної випадкової величини
Нехай
неперервна випадкова функція дійсного аргументу
є неперервна випадкова величина, у якої відома функція щільності
. Розглянемо випадкову величину
.
Наприклад,
ш
Математичним сподіванням
зветься 
Обґрунтування цієї формули.
Ми знаємо, що якщо дискретна випадкова велична задається табличкою
, то
(для спрощення вважаємо, що
є неперервної на всій числовій осі.). Усю числову вісь розіб’ємо на відрізки довжини
,
– мале число.
– лівий кінець і-ого відрізка для будь-якого і від
до
. І замінимо неперервну випадкову величину
дискретною випадковою величиною
наступним чином:
якщо неперервна випадкова величина
настала в і-ий відрізок, то
прийняла значення
. Чим менше
, тим краще
апроксимує
, при
.
переходить в
.
Табличка для
задається:

Неперервна випадкова велична
, що дорівнює
замінюється дискретною випадковою величиною 
Так як
– неперервна числова скалярна функція дійсного аргументу
, то для малих
аргументу
, то тим краще
апроксимує
. Якщо
переходить в
.
Знайдемо математичне сподівання для
.

(використана формула
див. «початкові та центральні моменти дискретної випадкової величини»).
Якщо цей інтеграл
існує, то
дорівнює вищевказаному інтегралу
(обмежений по модулю).
Математичним сподіванням неперервної випадкової величини
зветься

Початковим моментом
-ого порядку зветься

Показати самим, що всі властивості початкових моментів, включаючи
такі самі як і у дискретних випадкових величин.
Центральним моментом
-ого порядку випадкової величини
зветься

Дисперсією випадкової величини
зветься її другий центральний момент

Довести самим, що всі властивості дисперсії випадкової величини, а саме:
1)
, то 
2) 
3) 
Дата публикования: 2014-11-26; Прочитано: 390 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!
