![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Функция с областью определения
достигает своего наибольшего (наименьшего) значения, если существует точка
, такая, что для всех
выполняется неравенство:
,
. Не-прерывная на отрезке [ а, b ] функция достигает на нем своего наибольшего и наименьшего значений. Эти значения могут достигаться как внутри отрезка, так и на его концах. Находим наибольшее и наименьшее значения непрерывной функции
на отрезке [ а, b ] по следующей схеме:
1. Находим .
2. Находят точки, в которых
или
не существует, и отбирают из них те, что лежат внутри отрезка [ а, b ].
3. Вычисляют значения функции в точках, полученных в пункте 2 и на концах отрезка, и выбирают из них наибольшее и наименьшее. Эти значения и будут искомыми значениями.
Пример. Найти наибольшее и наименьшее значения функции на отрезке [1, 4].
Данная функция является непрерывной на отрезке [1, 4]. Поэтому мы можем воспользоваться вышеприведенной схемой.
1. .
2. Найдем точки, в которых или
не существует.
не существует в точке
. Точка
не принадлежит отрезку [1, 4], значит, мы не рассматриваем ее.
. Значит:
;
;
.
Следовательно, в точке
.
Найдем значения функции в точке и на
концах отрезка, т. е. в точках ,
.
Аналогично:
;
. Следовательно,
при
;
при
.
Дата публикования: 2014-11-03; Прочитано: 323 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!