![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
|
Векторы
,
, …,
называются линейно зависимыми, если существуют такие действительные числа
, одновременно не все равные нулю, что:
(5.1)
Векторы
,
,
являются линейно зависимыми, т. к., например, для
,
,
выполняется:
. 
Векторы
,
, …,
называются линейно независимыми, если (5.1) выполняется только при условии:
. Например, векторы
,
,
являются линейно независимыми, так как:
,
следовательно:
.
Несложно показать, что векторы вида:
,
, …,
являются линейно независимыми.
Квадратную матрицу А порядка n можно представить в виде совокупности n векторов:

Рангом матрицы А rk A называется количество линейно независимых столбцов векторов этой матрицы (которое, кстати, всегда совпадает с количеством линейно независимых строк — векторов матрицы). Для нахождения ранга матрицы необходимо матрицу привести к треугольному виду, в котором все элементы, стоящие ниже главной диагонали, равны нулю. Для этого можно переставлять строки местами и прибавлять к элементам одной строки элементы другой строки, умноженные на одно и то же число. Тогда ранг матрицы будет равен количеству ненулевых строк в треугольной матрице.
Пример. Найдем ранг матрицы А:
|
|
|
Дата публикования: 2014-11-03; Прочитано: 322 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!
