![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Пусть . Рассмотрим точку
и дадим ей приращение
. Вычислим вероятность попадания случайной величины
на отрезок
. По формуле (1.13.2) имеем
Количество вероятности на единице длины – является средней плотностью вероятности. Если вычислить предел
(1.14.1)
получим плотность вероятности в точке. Функция называется функцией плотности вероятности или просто плотностью вероятности.
Применяя к формуле (11.2) формулу Ньютона – Лейбница, получим новое выражение для вероятности попадания случайной величины на заданный отрезок
(1.14.2)
Величина – называется элемент вероятности. Полагая в формуле (1.14.2)
, находим выражение закона распределения через плотность вероятности
(1.14.3)
Из формул (1.14.1) – (1.14.3) и свойств функции распределения следуют свойства функции плотности распределения
:
1) , (так как функция
взрастает),
2) (так как
),
3) (так как несобственный интеграл сходится).
С помощью этих свойств можно представить себе общий вид эскиза графика функции распределения .
Дата публикования: 2014-11-03; Прочитано: 218 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!