Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Линейные однородные дифференциальные уравнения n-го порядка с постоянными коэффициентами. Вид частных решений, характеристическое уравнение



ЛОДУ с постоянными коэффициентами

у(n) + P1y(n-1) +…+ Pn-1 y’ + Pn y = 0, где все Pi (i= )= const

будем искать частное решение y=ekx, к – неизвестная постоянная

y’=kekx

y’’=k2ekx

……

y(n)=k(n) ekx

k(n) ekx + P1k(n-1) ekx + … + Pnekx = ekx(k(n) + P1k(n-1) + … + Pn) = 0

ekx 0 => k(n) + P1k(n-1) + … + Pn = 0, (1)

ð y=ekx - решение ДУ

(1) – характеристическое уравнение для ЛОДу с постоянными коэффициентами, выражения слева характеристический многочлен.

Решением характеристич уравнения (1) дает систему частных решений ЛОДу, структура ФСР зависит от вида корней характер уравнения.

(1) – алгебраическое уравнение n-ой степени, может иметь не более, чем n корней, обознач-м эти корни характеристического уравнения через k1,k2 …kn

Возможны случай

1)все корни хар-го уранения вещественны и различны

2)все корни различны, но среди них есть комплексные

3)среди действительных корней имеются кратные

4)среди комплексных корней есть кратные

Общий алгоритм решения ЛОДу с постоянным коэффициентом

1) составим характер уравнение: y=ekx, k(n) + P1k(n-1) + … + Pn = 0

2) найти корни характер уравнения k1,k2 …kn

3) по характеру корней находим частное линейно-независимое решение по таблице 1

4) подставляем частное решение на основе Теоремы о структуре общего решения ЛОДУ и получаем общее решение y =

Вид корня Соответственное решение
  Действ корень кратности 1 ekx
  Пара корней a bi;кратнос 1 eаxcosbx, eаxsinbx
  Действит корень кратност α ekx, хekx, х2ekx, х3ekx,…, хα-1ekx
  Пара сопряж корней α a bi eаxcosbx, eаxsinbx хeаxcosbx, хeаxsinbx х2eаxcosbx, х2eаxsinbx хα-1eаxcosbx, хα-1eаxsinbx




Дата публикования: 2015-10-09; Прочитано: 474 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...