![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
4.1.1 Определение производной.
4.1.2 Геометрический и физический смысл производной.
4.1.3 Правила дифференцирования.
4.1.4 Формулы дифференцирования.
4.1.5 Приложения производной.
4.1.1 Определение. Пусть функция у = f (х) определена в точке х и в некоторой ее окрестности. Дадим аргументу х приращение ∆х, такое, чтобы не выйти из указанной окрестности. Найдем соответствующее приращение функции ∆у и составим отношение . Если существует предел этого отношения при ∆х →0, то указанный предел называют производной функции у = f (х) в точке х и обозначают f′ (х).
Итак, f′ (х).
Для обозначения производной часто используют символ у′.
Отмети, что у′ = f′ (х) – это новая функция, но, естественно, связанная с функцией у = f (х), определенная во всех таких точках х, в которых существует указанный выше предел. Эту функцию называют так: производная функции у = f (х).
Для линейной функции у = кх + m справедливо равенство к.
Это означает, что у′ = к или, подробнее,
(кх + m)′ = к.
В частности,
(х)′ = 1.
Для функции у = х2 справедливо равенство 2х.
Это означает, что у′ = 2х или, подробнее,
(х2)′ = 2х.
Вообще (хn)′ = n ·xn-1
4.1.2 Физический (механический) смысл производной состоит в следующем. Если
s (t) – закон прямолинейного движения тела, то производная выражает мгновенную скорость в момент времени t:
v = s′ (t).
На практике во многих отраслях науки используется обобщение полученного равенства: если некоторый процесс протекает по закону s = s (t), то производная s′ (t) выражает скорость протекания процесса в момент времени t.
Геометрический смысл производной состоит в следующем. Если к графику функции у = f (х) в точке с абсциссой х = а можно провести касательную, непараллельную оси у, то f′ (а) выражает угловой коэффициент касательной.
Поскольку к = tg α, то верно равенство
f′ (а) = tg α.
Если функция у = f (х) имеет производную в точке х, то ее называют дифференцируемой в точке х. Процедуру отыскания производной функции у = f (х) называют дифференцированием функции у = f (х).
Если функция дифференцируема в точке х, то она и непрерывна в этой точке.
Обратное утверждение неверно. Функция у = | х | непрерывна везде, в частности, в точке х = 0, но касательной к графику функции в точке (0; 0) не существует. Если в некоторой точке к графику функции нельзя провести касательную, то в этой точке не существует производной.
4.1.3 Введем правила нахождения производных суммы, произведения, частного функции.
Правило 1. Если функции у = f (х) и у = g (х) имеют производную в точке х, то их сумма имееи производную в точке х, причем производная суммы равна сумме производных:
(f (х) + g (х))′ = f′ (х) + g′ (х).
На практике это правило формулируют короче: производная суммы равна сумме производных. При этом речь может идти о дифференцировании суммы любого числа функций.
Например, (х2 + x3)′ = (x2)′ + (x 3)′ = 2x + 3 x.
Правило 2. Если функция у = f (х) имеет производную в точке х, то и функция
у = к f (х) имеет производную в точке х, причем
(к f (х))′ = к f′(х).
На практике это правило формулируют короче: постоянный множитель можно вынести за знак производной.
Например,
(5х2)′ = 5(х2)′ = 5 · 2 х = 10 х;
Правило 3. Если функции у = f (х) и у = g (х) имеют производную в точке х, то и их произведение имеет производную в точке х, причем
(f (х) · g (х))′ = f′ (х) g (х) + f (х) g′ (х).
На практике это правило формулируют так: производная произведения двух функций равна сумме двух слагаемых; первое слагаемое есть произведение производной первой функции на вторую функцию, а второе слагаемое есть произведение первой функции на производную второй функции.
Например,
((2х + 3) · х2)′ = (2х + 3)′ · х2 + (2х + 3) · (х2)′ = 2х2 + 4х2 + 6х = 6х2 + 6х
Правило 4 Если функции у = f (х) и у = g (х) имеют производную в точке х и в этой точке g (х) ≠ 0, то и частное имеет производную в точке, причем
.
Например,
.
4.1.4 При решении многих практических задач часто приходится находить производные элементарных функций. Ниже приведена таблица 4.1 производных некоторых элементарных функций.
Таблица 4.1
№ п/п | Функция | Производная |
у = хn | у′ = n · xn-1 | |
у = kx + b | у′ = k | |
у = ![]() | у′ = ![]() | |
у = ![]() | у′ = ![]() | |
у = c | у′ = 0 | |
у = (kx + b) p | у′ = p k (kx + b) p-1 | |
у = ax | у′ = ax ln a | |
у = ex | у′ = ex | |
у = ln (kx + b) | у′ = ![]() | |
у = logax | у′ = ![]() | |
у = sin x | у′ = cos x | |
у = cos x | у′ = -sin x |
4.1.5 Исследование функций с помощью производных
Дата публикования: 2015-04-10; Прочитано: 888 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!