![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Числовой ряд, содержащий бесконечное множество положительных и бесконечное множество отрицательных членов, называется знакопеременным. Частным случаем знакопеременного ряда является знакочередующийся ряд, то есть такой ряд, в котором последовательные члены имеют противоположные знаки. Ряд а1+а2+…+аn+…называется абсолютно сходящимся, если ряд |а1|+|а2|+…+|аn|+…также сходится, т.е. сходится ряд, составленный из модулей его членов. Ряд а1+а2+…+аn+…называется условно сходящимся, если сам он сходится, а ряд, составленный из модулей его членов, расходится.
Признак Лейбница для знакочередующихся числовых рядов.
Если члены знакочередующегося ряда убывают по абсолютной величине и стремятся к нулю, когда n–>∞, то: 1) ряд сходится; 2) любой остаток ряда не превосходит по абсолютной величине первого из своих членов и имеет одинаковый с ним знак.
Степенные ряды.
Ряд вида а0+а1+а2x2+…+аnxn+…, где а0, а1, а2, …, аn … - некоторая числовая последовательность, называют степенным рядом.
Теорема Абеля.
1) Если степенной ряд а0+а1+а2x2+…+аnxn+… сходится при некотором x=x0, не равном нулю, то он сходится, и притом абсолютно, при всех x, удовлетворяющих условию |x|<|x0|; 2) если ряд а0+а1+а2x2+…+аnxn+… расходится при некотором x=x1, то он расходится при всех x, удовлетворяющих условию |x|>|x1|.
Дата публикования: 2015-02-18; Прочитано: 187 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!