Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Решение системы трех линейных уравнений методами Крамера и Гаусса



Рассмотрим систему n линейных алгебраических уравнений с n неизвестными:

Вычислим определитель системы

Как известно, если ¹0, то система (1) имеет решение, и при том единственное. Если =0, то система (1) либо не имеет решений, либо имеет бесчисленное множество решений.

В дальнейшем мы будем предполагать, что ¹0.

1. Решение с помощью формул Крамера.

Если определитель системы ¹0, то, согласно формулам Крамера, решение системы (1) можно представить в виде

Здесь

; ;  
  .    
       

Определитель (i =1, 2,…, n) отличается от определителя системы тем, что столбец заменен столбцом из свободных членов, т.е. столбец заменен на столбец .

Пример. Дана расширенная матрица системы . Решить систему методом Крамера.

Решение. Запишем систему в стандартной форме

.

Определитель данной системы

Вычислим определители , и :

.

.

.

Решение системы:

Для того чтобы убедиться в правильности решения, подставим эти значения в исходную систему

.

2. Решение методом Гаусса. Пусть есть система (1) с определителем ¹0. Нашей системе можно сопоставить расширенную матрицу, в которой содержится вся информация о системе

.

Метод Гаусса состоит в том, что система (1) с помощью ряда элементарных преобразований сводится к новой системе, расширенная матрица которой имеет вид

.

Т.е. в результате преобразований все коэффициенты матрицы становятся равными нулю, кроме диагональных элементов, которые становятся равными единице: при и при . Столбец свободных членов превращается в новый столбец .

Если мы привели нашу матрицу к диагональному виду, то решение системы записывается очень просто:

Таким образом, решение системы сводится к совершению элементарных преобразований, в результате которых расширенная матрица (5) превращается в расширенную матрицу (6).

К элементарным преобразованиям системы (1) относятся следующие:

1) перемена местами уравнений (т.е. перемена местами строк расширенной матрицы);

2) умножение или деление любого уравнения системы (1) на число, отличное от 0 (т.е. умножение или деление строки расширенной матрицы на число, отличное от 0);

3) изменение любого уравнения системы (1) путем прибавления к нему другого уравнения системы, умноженного на число, отличное от 0 (т.е. изменение строки расширенной матрицы путем прибавления к ней другой строки, умноженной на число, отличное от 0).

Пример. Найти решение системы методом Гаусса.

.

Решение. Определитель системы . Таким образом, система имеет единственное решение. Найдем его методом Гаусса. Начальная расширенная матрица имеет вид

.

Далее мы будем приводить нашу матрицу к диагональному виду и выписывать ее вид после каждого шага преобразований.

1-й шаг. Разделим 1-ю строку матрицы на 2.

.

2-й шаг. 1-ю строку оставляем без изменения. Вместо 2-й строки записываем следующую ее комбинацию с 1-й: 1-ю строку умножаем на (-5), складываем ее со 2-й строкой, тогда новые числа, стоящие во 2-й строке расширенной матрицы, будут следующие:

Вместо 3-й строки записываем следующую ее комбинацию с 1-й: 1-ю строку умножаем на (-3) и складываем ее с 3-й строкой, тогда

Расширенная матрица примет вид

.

В результате первых 2-х шагов 1-й столбец преобразовался в .

3-й шаг. Делим вторую строку на 11.

.

4-й шаг. 2-ю строку оставляем без изменения. Вместо 1-й строки записываем следующую ее комбинацию со 2-й: 2-ю строку умножаем на 2 и складываем ее с 1-й строкой, тогда

Вместо 3-й строки записываем ее комбинацию со 2-й: 2-ю строку умножаем на (-14) и складываем ее с 3-й строкой, тогда

.

В результате 3-го и 4-го шагов 1-й столбец матрицы не изменился, а 2-й превратился в .

5-й шаг. Делим 3-ю строку на

.

6-й шаг. 3-ю строку оставляем без изменения. Вместо 1-й строки записываем ее комбинацию с 3-й: 3-ю строку умножаем на и складываем ее с 1-й строкой, тогда

Вместо 2-й строки записываем ее комбинацию с 3-й: 3-ю строку умножаем на и складываем ее со 2-й строкой, тогда

.

В результате 5-го и 6-го шагов 3-й столбец принял вид .

Таким образом, решение системы следующее: Проверка

Таким образом, смысл метода Гаусса состоит в том, что сначала 1-й столбец исходной матрицы приводим к виду , затем 2-й - к виду и, наконец, 3-й – к виду . При этом происходит преобразование столбца свободных членов.





Дата публикования: 2015-03-26; Прочитано: 265 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.01 с)...