Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Векторное произведение и его свойства



Результатом перемножения двух векторов может быть не только скаляр, но и вектор. Понятие векторного произведения, о котором пойдет речь в этом пункте, является объектом изучения теории трехмерного евклидова пространства. В евклидовом пространстве, число измерений которого отлично от трех, не имеется аналогий этого понятия.

Тройка векторов называется упорядоченной, если указано, какой из них считается первым, какой – вторым и какой – третьим. При записи тройки векторов мы всегда будем располагать эти векторы в порядке их следования (если для нас будет небезразличен порядок набора). Так, запись , , означает, что первым элементом тройки является вектор , вторым – вектор и третьим – вектор .

Упорядоченная тройка некомпланарных векторов , , называется правой, если, находясь внутри трехгранного угла, образованного приведенными к общему началу векторами , , , мы видим кратчайший поворот от к и от него к совершающимся против часовой стрелки. В противном случае тройка называется левой.

Удобное практическое правило определения правой тройки: упорядоченная тройка некомпланарных векторов , , является правой, если после приведения к общему началу векторы располагаются так, как могут быть расположены соответственно большой, указательный и средний пальцы правой руки.

Определение. Векторным произведением вектора на вектор называется вектор , обозначаемый символом (или ) и удовлетворяющий следующим трем требованиям:

1) длина вектора равна , где – угол между векторами и , т.е. площади параллелограмма, построенного на векторах и , как на сторонах;

2) вектор ортогонален плоскости векторов и (, );

3) векторы , , образуют правую тройку векторов.

Требования 1 и 2 определяют вектор с точностью до двух взаимно противоположных направлений; требование 3 отбирает одно из этих двух направлений. В случае, когда и коллинеарные, тройка , , является компланарной, но в этом случае уже из требования 1 следует, что .

 
 

Рис. 1

Понятие векторного произведения (так же, как и скалярное произведение[1]) родилось в механике. Если вектор изображает приложенную в некоторой точке силу, а вектор идет из некоторой точки в точку , то вектор представляет собой момент силы относительно точки .

Свойства векторного произведения:

1) векторы и – коллинеарны. В частности, .

2) (антикоммутативность).

3) для любого (однородность).

4) , (дистрибутивность).

Если векторы , заданы своими координатами в базисе , т.е. то

(1.5)

Замечание. При вычислении определителя 3-го порядка

можно воспользоваться формулой одной из следующих двух формул:

или

.

Пример 6. Найти векторное произведение векторов и

Решение. Воспользуемся формулой (1.5)

Пример 7. Найти площадь параллелограмма, построенного на векторах и

Решение. Найдем площадь параллелограмма, построенного на векторах и как длину их векторного произведения, т.е. . Сначала найдем

Тогда .

Пример 8. Найти площадь параллелограмма, построенного на векторах и , если

Решение. Согласно 1-му пункту определения векторного произведения имеем:

=

Пример 9. Найтиплощадь треугольника, построенного на векторах если

Решение.

При вычислении были использованы свойства 1)–4) векторного произведения, т.е.

Пример 10. Найти площадь треугольника с вершинами в точках

Решение. Площадь треугольника составляет половину площади параллелограмма, построенного на векторах и как на сторонах. Найдем координаты векторов Вычислим :

Теперь , откуда

Пример 11. Найти , если ,

Решение. Найдем координаты векторов и :

.

Вычислим

Найдем длину векторного произведения:





Дата публикования: 2015-03-26; Прочитано: 242 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.01 с)...