![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
1-я ситуация. Известны одна точка M0(x 0 ; y 0) на прямой и угловой коэффициент k прямой L.Тогда уравнение прямой пишется так:
y – y 0= k × (x – x 0).
· Пояснение. В формуле (6) параметр k известен, а параметр b не известен. Чтобы исключить его из (6), учтем, что точка M0 лежит на прямой: y 0= k x 0+ b. Вычтем это уравнение из (6). Получим: y - y 0= k ×(x - x 0). ·
2-я ситуация. Известны одна точка M0 (x 0 ; y 0 ) на прямой L и ненулевой вектор (l; m),параллельный прямой (такой вектор называется направляющим). В этой ситуации пишут так называемое каноническое уравнение прямой на плоскости:
(8)
· Пояснение. Для точек M (x; y) на прямой L вектор параллелен вектору
,и значит, пропорционален ему:
= t ×
. Множитель (переменная величина) t называется параметром на прямой. Запишем это в координатах: x - x 0= t × l,
y - y 0 = t × m. (это – т.наз. параметрические уравнения прямой на плоскости.)Исключая отсюда t, получим (8). Может оказаться, что один из знаменателей в (8) равен нулю, например, l = 0. Запись (x – x 0)/ 0 =(y - y 0) / m есть условность(ее нельзя понимать буквально). Чтобы «расшифровать» ее, возвращаемся к параметрическим уравнениям прямой и получаем корректное уравнение данной прямой: x - x 0 = 0.·
3-я ситуация. Известны две точки M0(x 0 ; y 0) и M1(x 1 ; y 1 ) на прямой L. Тогда уравнение прямой также пишется в каноническом виде, причем роль направляющего вектора (l; m) играет вектор
(x 1– x 0 ; y 1 - y 0):
(9)
В частности, если известны две точки M0 (a; 0) и M1(0; b) прямой, принадлежащие координатным осям O x иO y, соответственно, то пишут так называемое уравнение прямой в отрезках: x a + y b = 1.
3.Применение: линейное интерполирование функций.
Пусть известно, что график некоторой функции y = f (x) на отрезке [ a; b ] незначительно отличается от отрезка прямой. Заменим график функции на отрезке отрезком прямой, соединяющей точки M0(a; f (a)) и M1(b; f (b)). Согласно (9),
уравнение этой прямой есть
Эту формулу называют линейной интерполяцией (или линейным приближением)
данной функции на данном отрезке. На практике используют таблицу значений линейной интерполяции. Для этого отрезок [ a; b ] разбивают на некоторое число n
равныхотрезков. Длина каждого отрезка (b - a) / n обозначается как D x (знак D означает «изменение»). Когда x изменяется на величину D x, данная функция
Дата публикования: 2015-03-26; Прочитано: 223 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!