Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Условный экстремум, метод множителей Лагранжа для функции двух переменных



В этом методе не требуется выражать явно y через х, однако используется то обстоятельство, что в случае предполагаемой замены y на g(x) дело сводится к безусловному экстремуму функции одной переменной.

Итак, находим полную прозводную от z по х, считая y функцией х:


В точках экстремума dz: dx=0, следовательно (1),


Применим снова правило дифференцирования сложной функции к уравнению φ(x,y)=0. Будем предполагать при этом, что у заменен той самой функцией х, которая неявно задается уравнением. Такая замена превращает уравнение φ(x,y)=0 в тождество. Получим (2):


Умножим (2) на неопределенный множитель λ и сложим с (1):

 
 

Мы будем предполагать, что в точке экстремума ¶j¸¶у¹0. Тогда существует число l, при котором ¶f¸¶y + l(¶j¸¶у) = 0 в этой точке. Из равенства (3) следует, что в этой точке ¶f¸¶х + l(¶j¸¶х) = 0

Мы приходим к необходимым условиям экстремума (4):


В этой системе из трех уранений три неизвестные величины x, y и l. Из системы находятся одна или несколько точек (х,у). Что касается l, то этот множитель играет вспомогательную роль и дальше не требуется. Найденные точки (х,у) проверяют на наличие в них экстремума и его вид (максимум или минимум). В случае необходимости вычисляются значения f(x,y) на концах промежутка, ограничивающего изменение х при описании кривой АВ. Часто из существа задачи легко решается вопрос, с каким из значений - наибольшим или наименьшим - мы имеем дело. Проведенные рассуждения обосновывают метод Лагранжа, который состоит в следующем.

Составляется вспомогательная функция

F (x,y,l) = f(x,y) + lj(x,y) (5), называемая функцией Лагранжа. Для нее выписываются как для функции трех переменных необходимые условия абсолютного экстремума:

 
 

При этом получается в точности система (4).

Коэффициент l называют множителем Лагранжа.

Метод Лагранжа допускает обобщение на функции большего числа переменных. Так, в задаче на условный экстремум функции u=f(x,y,z) с ограничениями j1(x,y,z)=0 и j2(x,y,z)=0 функция Лагранжа имеет вид:

F(x,y,z, l1, l2) = f(x,y,z) + l1j1(x,y,z)+ l2j2(x,y,z).

Нулю приравниваются все произвоные по x,y,z, l1, l2.





Дата публикования: 2015-03-26; Прочитано: 388 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...