![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Определение: Функция F( x ) называется первообразной для функции f(x) на интервале (a,b), если на этом интервале существует производная F'(x) и F'(x)=f(x).
Теорема: Если F1(x) и F2(x) - первообразные для одной и той же функции f(x), то их разность есть величина постоянная.
Докозательство: По условию F'1(x)=F'2(x)=f(x) обозначим: Ф(x)= F1(x) - F2(x). Очевидно, Ф'(x) равняется нулю во всем промежутке (a,b), где определены первообразные F1(x) и F2(x). Для любых х1, x2,Î (a,b) по формуле Лагранжа Ф(х1)-Ф(х2)=Ф'(c)(b-a). но Ф'(c)=0, т.к. сÎ (a,b), следовательно Ф(х1)=Ф(х2). Это означает, что Ф(х) сохраняет постоянное значение на промежутке (a,b), т.е. F1(x) - F2(x) =С.
Следствие: Если для функции f(x) первообразной на интервале (a,b) является функция F(x), то ее любая другая первообразная для f(x) имеет вид F(x)+C, где С - произвольная постоянная.
14. Неопределенный интеграл. Табличные интегралы.
Определение: Неопределенным интегралом от функции f(x) называется совокупность всех первообразных этой функции. Он изображается так: ∫ f(x)dx, где ∫- знак интеграла, f(x)dx - подынтегральное выражение,f(x) - подынтегральная функция.
Из определения вытекает, что
И следовательно d(∫f(x)dx)=f(x)dx. С другой стороны, ∫F'(x)dx=∫dF(x)=F(x)+C.
Если F(x) - какая-нибудь первообразная для f(x), то учитывая приведенное выше следствие, можно написать: ∫ f(x) dx = F(x)+C, где С- произвольная постоянная. Путем дифференцирования обеих частей равенства легко доказать справедливость следующих свойств:
1. ∫ Аf(x)dx = A ∫ f(x)dx (постоянный множитель можно выносить за знак интеграла).
2. ∫[f(x)-f(x)]dx=∫f(x)dx+∫f(x)dx (интеграл от суммы функций равен сумме интегралов от этих функций).
Дата публикования: 2015-03-26; Прочитано: 12786 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!