![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Опр-ие: Функция у=f(х) имеет в точке x0 локальный максимум, если сущ-ет окрестность (х0-d, х0+d), для всех точек х которой выполняется неравенство f(х)£f(х0). Аналогично определяется локальный минимум, но выполняться должно равенство f(х)³f(х0).
Теорема Ферма: Если функция у=f(х) имеет в точке х0 локальный экстремум и дифференцируема в этой точке, то ее производная f'(х0) равна нулю.
Док-во: Проведем его для случая максимума в точке х0. Пусть (х0-d, х0+d) - та окрестность, для точек которой выполняется неравенство
![]() | ![]() | ![]() | |||
При ∆х>0, будет ∆y:∆x ≤0, поэтому
![]() |
По условию теоремы, существует производная f'(х0) А это означает, что правая производная fпр'(х0) и левая производная fл'(х0) равны между собой: fпр'(х0)= fл'(х0)= f'(х0). Таким образом, с одной стороны, f'(х0)≤0, с другой стороны, f'(х0)≥0, что возможно лишь, когда f'(х0)=0.
4. Теорема Коши.
![]() |
![]() |
К ней применима теорема Ролля: F(х) непрерывна в [a,b] и дифференцируема в (a,b) как сумма функций, непрерывных и дифференцируемых в соответствующих промежутках, кроме того, как легко проверить непосредственно, F(a)=F(b)=0. Следовательно, существует точка c Î (a,b),, такая, что F'(c)=0. Вычисляем:
Подставляем x=c:
После деления на g'(х) (причем как говорилось раньше g'(х) ¹0), мы приходим к формуле (1)
Дата публикования: 2015-03-26; Прочитано: 496 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!