![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Выясним, как влияют на форму и расположение нормальной кривой значения параметров а и .
Известно, что графики функций f (х) и f (х — а) имеют одинаковую форму; сдвинув график f (х) в положительном направлении оси х на а единиц масштаба при а >0 или в отрицательном направлении при а < 0, получим график f (х — а). Отсюда следует, что изменение величины параметра а (математического ожидания) не изменяет формы нормальной кривой, а приводит лишь к ее сдвигу вдоль оси Ох: вправо, если а подрастает, и влево, если а убывает.
По-иному обстоит дело, если изменяется параметр (среднее квадратическое отклонение). Как было указано в предыдущем параграфе, максимум дифференциальной функции нормального распределения равен 1 / (). Отсюда следует, что с возрастанием максимальная ордината нормальной кривой убывает, а сама кривая становится более пологой, т. е. сжимается к оси Ох; при убывании нормальная кривая становится более «островершинной» и растягивается в положительном направлении оси Оу.
Подчеркнем, что при любых значениях параметров а и площадь, ограниченная нормальной кривой и осью х, остается равной единице (см. гл. XI, § 4, второе свойство плотности распределения).
На рис. 8 изображены нормальные кривые при различных значениях и а = 0. Чертеж наглядно иллюстрирует, как изменение параметра сказывается на форме нормальной кривой.
Заметим, что при а = О и = 1 нормальную кривую называют нормированной.
Дата публикования: 2015-01-25; Прочитано: 887 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!