Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Интервальные оценки неизвестных параметров распределений. Доверительные интервалы (ДИ) для МО нормально распределенной ГС (при известной и неизвестной дисперсии)



\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

На практике ограничиться нахождением «хороших» точечных оценок бывает обычно недостаточно. Приближенное равенство лишь указывает на то, что вместо неизвестного параметра можно использовать известное значение оценки . Однако важно знать (хотя бы в вероятностном смысле) величину совершаемой при этом ошибки. Для этого прибегают к построению интервальных оценок неизвестных параметров.

Пусть наблюдаемая величина имеет функцию распределения , зависящую от неизвестного параметра . При интервальном оценивании параметра ищут две такие статистики и ( и - случайные величины!), для которых при заданном выполняется соотношение . В этом случае интервал называют - доверительньм интервалом для параметра , число - доверительной вероятностью (надежностью, коэффициентом доверия), и - нижней и верхней доверительными границами соответственно.

Таким образом, -доверительный интервал — это случайный интервал, зависящий от выборки (но не от ), который содержит (накрывает) истинное значение неизвестного параметра с вероятностью . На практике обычно используют значения доверительной вероятности из небольшого набора близких к 1 значений (0,9; 0,95; 0,98; 0,99 и т. д.) и строят соответствующие им доверительные интервалы. Построение доверительных интервалов для отдельных параметров распределения генеральной совокупности зависит как от вида закона распределения, так и от того, являются известными значения остальных параметров распределения или нет.

Если наблюдаемая случайная величина имеет нормальный закон распределения с неизвестным математическим ожиданием и известной дисперсией , то доверительный интервал для математического ожидания имеет вид:

,

где - выборочное среднее; - объем выборки; число - такое значение аргумента функции Лапласа при котором . Находят число по заданной доверительной вероятности из табл. П2.

Квантилью, соответствующей вероятности , называется такое значение , при котором выполняется соотношение , где – плотность вероятностей соответствующего закона распределения (слово квантиль – женского рода). Геометрическое пояснение смысла квантили, отвечающей вероятности , приведено на рис. 2.

x
f(x)
xp
 
p

Рис. 2. Геометрическое пояснение смысла квантили , отвечающей вероятности

В этой терминологии число есть (1+g)/2 - квантиль стандартного нормального N (0,1) закона распределения.

Если наблюдаемая случайная величина имеет нормальный закон распределения с неизвестным математическим ожиданием и неизвестной дисперсией , то доверительный интервал для математического ожидания имеет вид:

где - выборочная дисперсия, , - объем выборки, число - квантиль распределения Стьюдента с (n —1) степенью свободы. Находят квантиль по заданным и из табл. ПЗ.

При больших (практически при ) распределение Стьюдента приближается (в смысле слабой сходимости) к стандартному нормальному закону распределения, поэтому в этом случае .

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\





Дата публикования: 2015-02-03; Прочитано: 525 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...