Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Уравнения Колмогорова



8.1. В данном параграфе мы установим связь между стохастическими уравнениями и задачей Коши для уравнений в частных производных второго порядка параболического типа, которые соответствуют прямому и обратному уравнениям Колмогорова.

8.2. В данном пункте мы выведем обратное уравнение Колмогорова.

Через обозначим пространство функций, определённых на , со значениями в , один раз дифференцируемых по и два раза по , причём эти производные непрерывны и ограничены.

Теорема 20. Пусть - единственное сильное решение стохастического уравнения (22), коэффициенты которого непрерывны по совокупности переменных. Пусть , , причём . Тогда удовлетворяет уравнению

(41)
8.2.1. Доказательство теоремы опирается на вспомогательное утверждение.

Лемма 21. Пусть - квадратично интегрируемый мартингал, допускающий представление

, (42)

где – неупреждающий процесс такой, что Р -п. н. .

Тогда Р -п. н. .

Доказательство. Без ограничения общности можно считать, что Р -п. н. . Пусть - разбиение отрезка такое, что .

Очевидно, что . Так как ,

то .

Но Р -п. н. и при Р -п. н. . Следовательно . Доказательство закончено.

8.2.2. Доказательство теоремы 20. Так как удовлетворяет стохастическому уравнению (36), а , то к можно применить формулу Ито, имеем

(43)
Заметим, что в силу марковского свойства процесс является мартингалом относительно меры Р. Кроме того, стохастический интеграл является мартингалом относительно меры Р. Поэтому мартингалом относительно потока и меры Р является второе слагаемое правой части (43). Следовательно, в силу леммы 21 Р -п. н.

. (44)

В силу условий теоремы и непрерывности процесса по можно осуществить предельный переход равенстве (44) при . В результате уравнение (41). Осталось отметить, что . Доказательство закончено.

8.3. В данном пункте мы выведем прямое уравнение Колмогорова, соответствующее стохастическому уравнению (22).

Теорема 22. Пусть выполнены условия теоремы 19. Пусть для любого существует плотность распределения , обозначаемая через . Кроме того, пусть существуют производные , , для любых . Тогда плотность распределения удовлетворяет уравнению

(45)
8.3.1. Замечание. Уравнение (45) обычно называют уравнением Фоккера-Планка-Колмогорова.

8.3.2. Доказательство теоремы 22. Пусть - бесконечно дифференцируемая функция с компактным носителем [13], а - единственное сильное решение стохастического уравнения (22). В силу формулы Ито, имеем Р -п. н.

(46)

Возьмем математическое ожидание относительно левой и правой частей (46), учитывая свойства стохастических интегралов, имеем

.

В силу условий теоремы и теоремы Фубини последнее равенство можно переписать в виде

Положим для любого х. Кроме того, в силу формулы интегрирования по частям правая часть последнего равенства будет иметь вид (в силу свойств функции )

.

Отсюда, в силу произвольности функции получаем, что удовлетворяет уравнению (42). Доказательство закончено.


Литература.

А.Н.Ширяев. Вероятность. М.: Наука, 1980, 576с.

А.Д.Вентцель. Курс теории случайных процессов. М.: Наука, 1996, 399с.

Ж.Невё. Математические основания теории вероятностей. М.: Мир, 1969, 309с.

И.И.Гихман, Н.В.Скороход. Теория случайных процессов, т.2. М.: Наука, 1973, 639с.

Е.Б.Дынкин. Марковские процессы. М.: Физматиз, 1963, 859с.

Р.Ш.Липцер, А.Н.Ширяев. Статистика случайных процессов. М.: Наука, 1974, 696с.

Р.Ш.Липцер, А.Н.Ширяев. Теория мартингалов. М.: Наука, 1986, 512с.

Ж.Жакод, А.Н.Ширяев. Предельные теоремы для случайных процессов, т1. М.: Физ-мат. лит., 1994, 542с.

Р.А.Мейер. Вероятность и потенциалы. М.: Мир, 1973, 324с.

Дж.Дуб. Вероятностные процессы. М.: ИЛ, 1956, 605с.

П.Халмош. Теория меры М.: ИЛ, 1953, 291с.

П.Биллингсли. Сходимость вероятностных мер. М.: Наука, 1977, 351с.

А.Н. Колмогоров, С.В.Фомин. Элементы теории функций и функционального анализа. М.: Наука, 1989, 496с.

P.Bremand. Point Processes and Queunes (Martingale Dynamics). Springer-Verlag, New York-Heideberg-Berlin, 1981, 354p.

Н.Н.Лебедев. Специальные функции и их приложения. М.: Физ-мат. лит., 1963, 358с.

А.В.Булинский, А.Н.Ширяев. Теория случайных процессов. М.: Физ-мат. лит., 2003, 400с.

Б.Оксендаль. Стохастические дифференциальные уравнения. Введение в теорию и приложения. М.: Мир, 2003, 408с.


Список обозначений.

- принадлежит

- пересечение

- объединение

- дополнение

- включение

- пустое множество

- любой

- существует

! - единственный

- по определению

- градиент

- сумма

- произведение

- n- мерное евклидово пространство

- польское (полное метрическое сепарабельное) пространство

- σ-алгебра борелевских множеств на

- индикатор множества А

- декартово произведение множеств X и Y

- σ-алгебра, равная произведению σ-алгебр и

- точная верхняя (нижняя) грань

- предел

- нижний (верхний) предел

- монотонно стремиться снизу (сверху)

- знак для различных видов сходимости

- отображение

- пространство непрерывных ограниченных функций на Е со значениями в

- пространство измеримых ограниченных функций на Е со значениями в

- норма





Дата публикования: 2015-01-23; Прочитано: 302 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.012 с)...