Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Абсолютная непрерывность вероятностных мер, соответствующих скачкообразным процессам



15.1. Определение. Пусть на измеримом пространстве заданы две вероятностные меры , i = 1,2. Будем говорить, что мера абсолютно непрерывна относительно меры и обозначать , если из того, что следует, что .

Из этого определения следует: если , то

. Очевидно, что достаточным условием является следующее: для .

Из теоремы Радона - Никодима следует, что если , то существует F - измеримая функция такая, что , которую называют производной Радона - Никодима и обозначают .

Везде ниже интеграл по мере будем обозначать через .

Пусть имеется измеримое пространство с фильтрацией , на котором заданы две вероятностные меры , i = 1,2. Через обозначим сужение меры на , т. е. . Пусть , тогда существует в силу теоремы Радона – Никодима - процесс называемый локальной плотностью .

Теорема 48. Пусть - локальная плотность. Тогда неотрицательный мартингал относительно меры , причем для .

Доказательство. Пусть и . В силу условий теоремы поэтому . Так как , то . Значит

.

Отсюда в силу произвольности получаем, что - п. н. Для завершения доказательства осталось заметить, что при для .

15.3. Рассмотрим опциональный случайный процесс , опреде-ленный на стохастическом базисе со значениями в и для Р - п. н. допускающий представление

, (17)

где опциональный случайный процесс с кусочно-постоянными траекториями и неслучайной матрицей интенсивности перехода , причем ; : - предсказуемая случайная функция такая, что

Р - п. н. для .

Сначала заметим, что - предсказуемый процесс, так как

- опциональный. Из свойств интегралов, стоящих в правой части (17) следует

. (18)

Пусть - последовательность марковских моментов, исчерпывающая скачки процесса , ясно, что: а) ; б) на множестве ; в) . Тогда последнее равенство (18) можно записать в виде

. (18а)

Отсюда следует, что в момент времени происходит скачек у процесса и его величина вычисляется по формуле . Поэтому Р - п. н.

. (19)

Пусть , из (18) следует, что Р - п. н.

.

Очевидно, что

.

Далее в силу (18), имеем

.





Дата публикования: 2015-01-23; Прочитано: 402 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...