![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Пусть EÌ R и a – предельная точка множества E.
Определение 1. Будем говорить, что a –предельная точка для множества E, если любая окрестность точки a содержит бесконечное подмножество множества E.
Пусть f:E ® R. Приведем несколько формулировок определения предела функции. Для разных оценок бывает удобна то одна, то другая.
Определение 2 (предел функции по Коши). Число A Î R называется пределом функции f(x) в точке a или при x® a и это обозначается следующим образом lim x ® af (x) = A, если
" e > 0 $ d(e)>0: " x: 0 <|x-a|< d, Þ |f (x) -A|< e
Пример 1. Доказать, что limx® 1(2x+3) = 5.
Запишем определение предела для данного примера
" e >0 $ d (e)>0 " x удовлетворяющих условию: 0 <|x- 1 |< d
должно быть выполнено неравенство
| 2 x+ 3-5 |< e или 2 |x- 1 |< e.
Отсюда следует, что неравенство 2|x-1|<2d<e выполнится, если d£e/2. Если e = 0,1, то d = 0,05, при e = 0,01, d = 0,005 и т.д. Таким образом, решение задачи состоит в нахождении d, зависящего от e.
Определение 3. Проколотой окрестностью точки называется окрестность точки, из которой исключена эта точка.
Обозначается проколотая окрестность символом .
Определение 4 (предел функции на "языке окрестностей"). Число A Î R называется пределом функции f(x) в точке a или при x® a,
если для любой окрестности U (A) числа A существует проколотая окрестность точки a такая, что f (
) Ì U (A).
Приведем еще одно эквивалентное определение предела на "языке последовательностей".
Определение 5 (предел функции по Гейне). A=limx ® af(x)
означает, что
" xn ® a при n ® ¥; xn ¹ a, f (xn) ® A при n ® ¥
Пример 2. Покажем, что не существует предела f(x) = sin(1/x) при x® 0. Для этого используем определение предела на языке последовательностей. Выберем две последовательности xn1 = 1/p n, xn2 = 1/(p/2+2p n), которые обе сходятся к нулю при n®¥. Тогда sin xn1 = sin p n=0, sin xn2 = sin (p/2+2p n) = 1, Таким образом, f(xn1) и f(xn2) сходятся к разным числам, поэтому определение предела на "языке последовательностей" не выполняется.
Пример 3. Рассмотрим функцию Дирихле
f (x) = |
|
, где Q – множество рациональных чисел, соответственно множество R\ Q – множество иррациональных чисел. Данная функция не имеет предела ни в одной точке a действительной прямой. Действительно, если выбрать последовательность рациональных чисел, сходящихся к a, то соответствующая последовательность значений функции сходится к единице. Если выбрать последовательность иррациональных значений, то значения функции сходятся к нулю. Следовательно, на основании определения предела по Гейне данная функция не имеет предела.
Рассмотрим геометрический смысл предела функции в точке. Неравенство |f(x)-A|<e равносильно двойному A-e<f(x)<A+e. Число A есть предел функции f(x) при x®a, если для любого e >0 найдется такая d -окрестность точки a, что для всех x¹ a из этой окрестности соответствующие значения функции f(x) будут заключены в полосе A-e<f(x)<A+e (см. рис. 14).
Рассмотрим понятие предела функции в бесконечности.
Дата публикования: 2015-01-10; Прочитано: 476 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!