![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Определение 1.1. Переменная z (с областью изменения Z)называется функцией двух независимых переменных х,у в множестве М, если каждой паре (х,у) из множества М по некоторому правилу или закону ставится в соответствие одно определенное значение z из Z.
Определение 1.2. Множество М, в котором заданы переменные х,у, называется областью определения функции, а сами х,у – ее аргументами.
Обозначения: z = f(x,y), z = z(x,y).
Примеры.
z = xy, z = x ² + y ² - функции, определенные для любых действительных значений х,у.
- функция, областью определения которой являются решения неравенства
.
Замечание. Так как пару чисел (х,у) можно считать координатами некоторой точки на плоскости, будем впоследствии использовать термин «точка» для пары аргументов функции двух переменных, а также для упорядоченного набора чисел , являющихся аргументами функции нескольких переменных.
Определение 1.3.. Переменная z (с областью изменения Z)называется функцией нескольких независимых переменных в множестве М, если каждому набору чисел
из множества М по некоторому правилу или закону ставится в соответствие одно определенное значение z из Z. Понятия аргументов и области определения вводятся так же, как для функции двух переменных.
Обозначения: z = f , z = z
.
Геометрическое изображение функции двух переменных.
Рассмотрим функцию z = f(x,y), (1.1)
определенную в некоторой области М на плоскости О ху. Тогда множество точек трехмерного пространства с координатами (x,y,z), где
, является графиком функции двух переменных. Поскольку уравнение (1.1) определяет некоторую поверхность в трехмерном пространстве, она и будет геометрическим изображением рассматриваемой функции.
z
z = f(x,y)
M y
Примерами могут служить изучаемые в предыдущем семестре уравнения плоскости
z = ax + by + c
и поверхностей второго порядка:
z = x ² + y ² (параболоид вращения),
(конус) и т.д.
Замечание. Для функции трех и более переменных будем пользоваться термином «поверхность в n -мерном пространстве», хотя изобразить подобную поверхность невозможно.
Линии и поверхности уровня.
Для функции двух переменных, заданной уравнением (1.1), можно рассмотреть множество точек (х,у) плоскости О ху, для которых z принимает одно и то же постоянное значение, то есть z = const. Эти точки образуют на плоскости линию, называемую линией уровня.
Пример.
Найдем линии уровня для поверхности z = 4 – x ² - y ². Их уравнения имеют вид x ² + y ² = 4 – c (c =const) – уравнения концентрических окружностей с центром в начале координат и с радиусами . Например, при с =0 получаем окружность x ² + y ² = 4.
Для функции трех переменных u = u (x, y, z) уравнение u (x, y, z) = c определяет поверхность в трехмерном пространстве, которую называют поверхностью уровня.
Свойства пределов и непрерывных функций.
Так как определения предела и непрерывности для функции нескольких переменных практически совпадает с соответствующими определениями для функции одной переменной, то для функций нескольких переменных сохраняются все свойства пределов и непрерывных функций, доказанные в первой части курса, а именно:
1) Если существуют то существуют и
(если
).
2) Если а
и для любого i существуют пределы
и существует
, где М0
, то существует и предел сложной функции
при
, где
- координаты точки Р 0.
3) Если функции f(M) и g(M) непрерывны в точке М 0, то в этой точке непрерывны и функции f(M) + g(M), kf(M), f(M)•g(M), f(M)/g(M) (если g(M 0) ≠ 0).
4) Если функции непрерывны в точке Р0
, а функция
непрерывна в точке М0
, где
, то сложная функция
непрерывна в точке Р0.
5) Функция непрерывная в замкнутой ограниченной области D, принимает в этой области свое наибольшее и наименьшее значения.
6) Если функция непрерывная в замкнутой ограниченной области D, принимает в этой области значения А и В, то она принимает в области D и любое промежуточное значение, лежащее между А и В.
7) Если функция непрерывная в замкнутой ограниченной области D, принимает в этой области значения разных знаков, то найдется по крайней мере одна точка из области D, в которой f = 0.
Ответ №8
СВОЙСТВА ФУНКЦИЙ, НЕПРЕРЫВНЫХ НА ОТРЕЗКЕ
Рассмотрим некоторые свойства функций непрерывных на отрезке. Эти свойства приведём без доказательства.
Функцию y = f(x) называют непрерывной на отрезке [ a, b ], если она непрерывна во всех внутренних точках этого отрезка, а на его концах, т.е. в точках a и b, непрерывна соответственно справа и слева.
Теорема 1. Функция, непрерывная на отрезке [ a, b ], хотя бы в одной точке этого отрезка принимает наибольшее значение и хотя бы в одной – наименьшее.
Теорема утверждает, что если функция y = f(x) непрерывна на отрезке [ a, b ], то найдётся хотя бы одна точка x1 [ a, b ] такая, что значение функции f(x) в этой точке будет самым большим из всех ее значений на этом отрезке: f(x1) ≥ f(x). Аналогично найдётся такая точка x2, в которой значение функции будет самым маленьким из всех значений на отрезке: f(x1) ≤ f(x).
Ясно, что таких точек может быть и несколько, например, на рисунке показано, что функция f(x) принимает наименьшее значение в двух точках x2 и x 2'.
Замечание. Утверждение теоремы можно стать неверным, если рассмотреть значение функции на интервале (a, b). Действительно, если рассмотреть функцию y = x на (0, 2), то она непрерывна на этом интервале, но не достигает в нём ни наибольшего, ни наименьшего значений: она достигает этих значений на концах интервала, но концы не принадлежат нашей области.
Также теорема перестаёт быть верной для разрывных функций. Приведите пример.
Следствие. Если функция f(x) непрерывна на [ a, b ], то она ограничена на этом отрезке.
Дата публикования: 2015-01-10; Прочитано: 216 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!