![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
1. Уравнения с разделяющимися переменными. Это уравнения, которые можно привести к виду у' = f1 (х) * f2 (у). Они решаются разделением переменных: производная записывается как отношение дифференциалов, группируются по разные стороны от знака равенства члена, содержащие х и у соответственно. После интегрирования получается общий интеграл уравнения.
Пример 1. Найти общий интеграл уравнения у' = .
Решение. ln |у| = ln |х| + ln |с| - общий интеграл (ln |с| - произвольная постоянная, записанная в удобной форме).
|y| = |cx|
у = сх – общее решения.
Аналогично решаются задачи 1-25.
2. Однородные уравнения. Это уравнение вида у' = f (х, у), где функция f (х, у) обладает свойствами f = (λx, λу) = f (х, у). На основании указанного свойства правой части, с помощью замены переменных у = и * х (вместо функции у (х) вводится новая функция и(х), однородное уравнение сводится к уравнению с разделяющимися переменными.
Пример 2. Найти общее решение уравнения: у' = ln
+
.
Решение. Убеждаемся, что уравнение однородное:
ln
+
=
ln
+
. Делаем указанную замену переменных у = и * х
у' = и'х + и (производная произведения). В новых переменных уравнение имеет вид и'х + и = иlnи + и и решается разделением переменных
u
ln |lnu| = ln|x| + ln|c|
|lnu| = |cx| lnu = cx
u = eсх.
После возврата к старым переменным общее решение примет вид:
= eсх
у = х * eсх.
3. Линейное уравнения. Это уравнение вида у' + Р (х) * у = Q (х). Будет решать методом вариации произвольной постоянной:
- решается однородное уравнение у' + Р (х) * у = 0, с разделяющимися переменными = - Р (х) dx
у – с *
,
- произвольная постоянная С считается функцией с (х) и эта функция подбирается из условия, чтобы у = с(х) * была бы решением исходного неоднородного уравнения; этот подбор сводится к решению еще одного уравнения с разделяющимися переменными относительно искомой функции с (х). После подстановки ч = с(х) *
в уравнение имеем
+ Р(х)
= Q (х)
с' = Q (х)
с =
Q (х)
dx + с1.
Окончательно общее решение имеет вид: у = ( Q (х)
dx + С1)
.
Пример.3. Кривая проходит через точку (1.3), угловой коэффициент касательной к этой кривой в любой ее точке зависит от координат точки касания следующим образом: к (х, у) = - х. Найти уравнение этой кривой.
Дата публикования: 2014-12-11; Прочитано: 296 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!