Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Примеры решения задач. Задача 10.3.1. Груз 3 массы т поднимается по наклонной плоско­сти, образующей с горизонтом угол , при помощи лебедки



Задача 10.3.1. Груз 3 массы т поднимается по наклонной плоско­сти, образующей с горизонтом угол , при помощи лебедки, со­стоящей из пары зубчатых колес 7, 2 и барабана радиуса r 2 (рис. 10.1). Колесо 1 приводится во вращение электромотором. Барабан жестко скреплен с колесом 2. Определить натяжение троса, пренеб­регая его деформацией, если колесо 1 вращается с угловым ускоре­нием . Радиусы колес R 1 и R 2. Коэффициент трения груза о плос­кость равен f. Массой троса пренебречь.

Рис. 10.1

Решение. Определим ускорение груза. Поскольку деформацией троса пренебрегаем, то

,

где - угловое ускорение барабана.

Однако

,

поэтому

. (10.8)

Полагая груз материальной точкой, освободим его от связей, за­менив их действие силами реакции. Изобразим силы, действующие m груз (рис. 10.2): силу тяжести , реакцию троса , нормальную реакцию плоскости и силу трения .

Составим дифференциальные уравнения движения груза в про­екциях на оси координат:

(10.9)

Из первого уравнения . Следовательно,

.

Рис. 10.2

Из второго уравнения систе­мы (10.9)

.

Подставляя сюда значение силы трения и учитывая, что (10.8), получаем

.

Натяжение троса численно равно реакции S.

Задача 10.3.2. В железнодорожных скальных выемках для защиты кюветов от попадания в них с откосов каменных осыпей устраивается «полка» DC. Учитывая возможность движения камня из наивысшей точки А откоса и полагая при этом его начальную скорость , определить наименьшую ширину полки b и скорость , с которой камень падает на нее. По участку АВ откоса, составляющему угол α с горизонтом и имеющему длину l, камень движется τ с. Коэффициент трения скольжения f камня на участке АВ считать постоянным, а сопротивлением воздуха пренебречь.

Дано: . Определить b и (рис. 10.3).

Рис. 10.3

Решение. Задачу разделим на два этапа. Первый – движение камня на участке АВ, второй – движение камня от точки В до С.

Первый этап. 1. Составление расчетной схемы. Ось проводим по направлению движения камня, ось - перпендикулярно к оси . Камень принимаем за материальную точку и показываем ее в текущем положении, изображаем действующие на камень (точку) силы: вес , нормальную реакцию и силу трения скольжения (рис. 10.4).

2.Выявление начальных условий.

При .

Рис. 10.4

3.Составление дифференциальных уравнений движения точки. Так как точка (камень) движется прямолинейно, то при направлении оси х вдоль траектории получим одно дифференциальное уравнение движения

;

сила трения

,

тогда

;

;

.

4.Интегрирование дифференциальных уравнений движения. Интегрируя дифференциальное уравнение дважды, получаем:

;

;

;

;

;

;

.

5.Определение постоянных интегрирования. Подставим начальные условия, т.е. в уравнения:

;

;

.

6.Нахождение неизвестных величин и исследование полученных результатов. После подстановки постоянных интегрирования С 1 и С 2 получаем уравнение скорости и уравнение движения:

;

.

Для момента времени τ, когда камень покидает участок АВ,

,

т.е.

;

.

Умножим первое уравнение на τ/ 2, после этого разделим его на второе. В результате получим:

; ;

.

Второй этап. Движение камня от точки В до точки С.

1.Составление расчетной схемы. Координатные оси покажем так, как это удобно для решения задачи, в нашем случае ось х параллельна горизонтали и проходит через точку В, ось у направляем вниз через точку В. Камень принимаем за материальную точку, показываем ее в текущем положении, изображаем действующую на камень силу тяжести (рис. 10.4).

2. Выявление начальных условий движения. При :

.

3.Составление дифференциальных уравнений движения. Так как движение точки происходит в плоскости ху, то число уравнений движения равно двум:

.

4.Интегрирование дифференциальных уравнений движения. Интегрируем дифференциальные уравнения дважды:

(a)

; (б)

(в)

. (г)

5. Определение постоянных интегрирования. Подставляем начальные условия: в уравнения (а – г):

,

откуда

.

6.Нахождение искомых величин и исследование полученных результатов. После подстановки постоянных интегрирования в уравнения (а –г) получаем следующие уравнения проекций скорости камня:

и уравнения его движения

.

Уравнение траектории камня найдем, исключив параметр t из уравнений движения:

;

– уравнение параболы.

В момент падения . Определим d из уравнения траектории:

; ;

.

Так как траекторией движения камня является ветвь параболы с положительными абсциссами ее точек, то d =2,11 м.

Минимальная ширина полки

.

Используя уравнение движения камня , найдем время Т движения камня от точки В до точки С

.

Скорость камня при падении найдем через проекции скорости на оси координат:

по формуле

.

Для момента падения t=T= 0,53 c

.

Скорость камня при падении равна 12,8 м/с.





Дата публикования: 2014-11-18; Прочитано: 1352 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.012 с)...