Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
Сколько факторов следует выделять? Напомним, что анализ главных компонент является методом сокращения или редукции данных, т.е. методом сокращения числа переменных. Возникает естественный вопрос: сколько факторов следует выделять? Отметим, что в процессе последовательного выделения факторов они включают в себя все меньше и меньше изменчивости. Решение о том, когда следует остановить процедуру выделения факторов, главным образом зависит от точки зрения на то, что считать малой "случайной" изменчивостью. Это решение достаточно произвольно, однако имеются некоторые рекомендации, позволяющие рационально выбрать число факторов.
Критерий Кайзера. Сначала вы можете отобрать только факторы, с собственными значениями, большими 1. По существу, это означает, что если фактор не выделяет дисперсию, эквивалентную, по крайней мере, дисперсии одной переменной, то он опускается. Этот критерий предложен Кайзером (Kaiser, 1960), и является, вероятно, наиболее широко используемым. В приведенном выше примере на основе этого критерия вам следует сохранить только 2 фактора (две главные компоненты).
Критерий каменистой осыпи. Критерий каменистой осыпи является графическим методом, впервые предложенным Кэттелем (Cattell, 1966). Вы можете изобразить собственные значения, представленные в таблице ранее, в виде простого графика.
Кэттель предложил найти такое место на графике, где убывание собственных значений слева направо максимально замедляется. Предполагается, что справа от этой точки находится только "факториальная осыпь" - "осыпь" является геологическим термином, обозначающим обломки горных пород, скапливающиеся в нижней части скалистого склона. В соответствии с этим критерием можно оставить в этом примере 2 или 3 фактора.
Какой критерий следует использовать. Оба критерия были изучены подробно Брауном (Browne, 1968), Кэттелем и Джасперсом (Cattell, Jaspers, 1967), Хакстианом, Рожерсом и Кэттелем (Hakstian, Rogers, Cattell, 1982), Линном (Linn, 1968), Тюкером, Купманом и Линном (Tucker, Koopman, Linn, 1969). Теоретически, можно вычислить их характеристики путем генерации случайных данных для конкретного числа факторов. Тогда можно увидеть, обнаружено с помощью используемого критерия достаточно точное число существенных факторов или нет. С использованием этого общего метода первый критерий (критерий Кайзера) иногда сохраняет слишком много факторов, в то время как второй критерий (критерий каменистой осыпи) иногда сохраняет слишком мало факторов; однако оба критерия вполне хороши при нормальных условиях, когда имеется относительно небольшое число факторов и много переменных. На практике возникает важный дополнительный вопрос, а именно: когда полученное решение может быть содержательно интерпретировано. Поэтому обычно исследуется несколько решений с большим или меньшим числом факторов
Дата публикования: 2014-11-18; Прочитано: 1342 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!