Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Основные пищевые источники ПНЖК семействаω-З



Продукт Порция, г ЭПК, г ДГК, г Порция, обеспечивающая поступление 1г ЭПК + ДГК, г
Сельдь   1,06 0,75  
Лосось   0,86 0,62  
Устрицы   0,75 0,43  
Форель   0,40 0,44  
Крабы   0,24 0,10  
Креветки   0,15 0,12  
Треска   0,09 0,15  
Рыбий жир (лососевый)   0,13 0,09  

Фосфолипиды и стерины. В состав пищевых липидов входят такие значимые группы веществ, как фосфолипиды и стерины. К группе фосфолипидов относятся лецитин (фосфотидилхолин), кефалин и сфингомиелин. Фосфолипиды состоят из глицерина, этерифицированного полиненасыщенными жирными кислотами и фосфорной кислотой, которая соединена с азотистым основа­нием. Фосфолипиды, поступающие с пищей, способствуют аб­сорбции триглицеридов пищи за счет мицеллообразования. Они полностью расщепляются в клетках кишечника, поэтому для орга­низма имеет решающее значение их эндогенный синтез в печени и почках. Эндогенный синтез лецитина, в частности, лимитиро­ван поступлением с рационом ПНЖК и холина.

Лецитин имеет большое значение в регулировании жирового обмена в печени — он относится к липотропным факторам пита­ния, препятствующим жировой инфильтрации печени за счет ак­тивизации транспорта нейтральных жиров из гепатоцитов. К пище­вым продуктам, содержащим максимальное количество предше­ственников синтеза лецитина и его самого, относятся нерафини­рованные растительные масла, яйца, морская рыба, печень, мас­ло сливочное, птица, а также фосфатидные концентраты, полу­чаемые как вторичное сырье при рафинировании масел и исполь­зуемые для обогащения пищевых продуктов.

Стерины имеют сложное органическое строение: они представ­ляют из себя гидроароматические нейтральные спирты. В живот­ных жирах содержится холестерин, а в растительных — фитостерин. Наибольшей биологической активностью среди фитостеринов обладает. Он способен оказывать гипохолестеринемическое действие, снижая абсорбцию холестерина в резуль­тате образования с последним в кишечнике неусваиваемых комп­лексов. Показано также участие ситостеринов в организации био­мембран. В растительных маслах содержится следующее количе­ство β-ситостерина, в 100 г продукта:

Кукурузное……………………………………………... 0,4

Соевое................................................................... 0,3

Арахисовое............................................................. 0,3

Хлопковое............................................................... 0,4

Оливковое............................................................... 0,3

Подсолнечное......................................................... 0,2

Основным животным стерином является холестерин. В усло­виях сбалансированного питания его эндогенный синтез (био­синтез) из НЖК в печени составляет не менее 80%, остальной холестерин поступает с пищей. Оптимальным уровнем его по­ступления с рационом считается 0,3 г/сут. В обмене холестерина важную роль играют витамины: аскорбиновая кислота, В6, В12, фолиевая кислота, биофлавоноиды. Холестерин имеет ключевое значение в организации и нормальном функционировании био­мембран, синтезе стероидных гормонов, кальциферолов, желч­ных кислот.

Последствия избыточного поступления жиров с пищей. Высокое поступление с пищей НЖК и собственно холестерина сопровож­дается повышением общей концентрации триглицеридов и жир­ных кислот в крови, увеличением количества циркулирующих в крови липопротеинов.

Все это ведет к гиперлипидемии, а в дальнейшем к развитию дислипопротеинемии — базовому нарушению пищевого статуса, лежащего в основе развития атеросклероза, сахарного диабета и избыточной массы тела и ожирения. Дислипопротеинемия — это нарушение соотношения различных фракций липопротеидов и триглицеридов, циркулирующих в крови, ведущее в различных соотношениях к повышению как абсолютного, так и относитель­ного количества липопротеидов низкой и очень низкой плотно­сти (ЛПНП и ЛПОНП) и триглицеридов при одновременном снижении количества ЛПВП. Последние относятся к компонен­там, снижающим атерогенность холестерина.

С биохимических позиций очень важно, что именно избыточ­ное поступление с пищей лауриновой, миристиновой и пальми­тиновой жирных кислот ведет к развитию гиперхолестеринемии и росту концентрации в крови наиболее атерогенных ЛПНП.Стеа­риновая кислота не участвует в построении ЛПНП и не обладает гиперхолестеринемическим эффектом.

Одновременное с ростом ЛПНП снижение концентрации ЛПВП отмечено при чрезмерном употреблении с пищей транси­зомеров жирных кислот. В природных жирах они практически от­сутствуют, за исключением небольшого содержания в мясе и мо­локе коров и овец — у этих животных происходит частичная изо­меризация природных жирных кислот в желудке. Основная же масса трансизомеров образуется при гидрогенезации ПНЖК — разрыве двойных связей атомами водорода при производстве маргарина или так называемых мягких масел (состоящих из комбинации ра­стительных и животных жиров). Длинноцепочечные жирные кис­лоты пищи, поступающие в организм в виде трансизомеров, на­пример транс- 18:1, не могут включаться в биосинтез биологиче­ски активных клеточных регуляторов (простагландинов и лейкотриенов), а используются лишь в качестве энергетического суб­страта.

При поступлении жира в избыточном по сравнению с потреб­ностью организма количестве также стимулируется глюконеогенез. Последнее обстоятельство приводит к снижению степени ути­лизации «углеводной» глюкозы из крови, увеличению нагрузки на инсулярный аппарат и проявляется у здорового человека в ро­сте концентрации гликозилированного гемоглобина А.,..

С гигиенических позиций, учитывая, что человек не питается отдельными жирными кислотами, гиперлипидемия и дислипопротеинемия, а также метаболическая гипергликемия должны рас­сматриваться как результат избыточного поступления с пишей всего объема жировых продуктов и продуктов, содержащих скрытый жир, независимо от их природы и жирно-кислотного состава.

В природе не существует «идеального» с позиций оптимально­го питания источника жира. Жирно-кислотный состав всех ис­пользуемых растительных масел наряду со значительным содер­жанием МНЖК и ПНЖК включает в себя и существенные коли­чества среднецепочечных НЖК (10... 15 % и более).

Морская рыба в настоящее время является единственным ис­точником жира, адекватное увеличение употребления которого взамен жира животного происхождения и растительного масла может рассматриваться как эволюционно оправданный шаг. При этом, однако, следует учитывать реальную возможность интенси­фикации прооксидантной нагрузки на организм, связанной с дей­ствием двух факторов:

• наличием относительно большого количества ПНЖК с вы­сокой степенью ненасыщенности (пять и шесть двойных связей), обладающих в силу этого большой способностью к окислению;

• отсутствием в жире рыб основного антиоксиданта — вита­мина Е.

Немаловажной является проблема безопасности рыбного сы­рья в плане контроля над остаточными количествами токсичных элементов, полихлорированных бифенилов и других контаминантов, а также природных токсинов (это особенно актуально при возможном использовании нетрадиционных видов морских рыб и других морепродуктов).

Еще один способ оптимизации жирно-кислотного состава пи­щевых продуктов связан с возможностями селекции и генной ин­женерии в рамках современной биотехнологии. Так, в результате обычной селекционной работы уже получены высокоолеиновое подсолнечное масло и низкоэруковое рапсовое. В настоящее время ведутся научно-практические разработки для создания на основе генной модификации масличных и зерновых культур (в первую оче­редь сои, рапса и кукурузы) с заданным составом жирных кислот.

Учитывая возможные индивидуальные особенности обмена веществ, оптимальный уровень жира находится в интервале 20... 30 % от энергетической ценности рациона, т. е. не должен пре­вышать 35 г на 1000 ккал рациона. Для человека со средним уров­нем энергозатрат это соответствует примерно 70... 100 г жира в сутки.

Большинство липидных соединений организма человека могут при необходимости быть синтезированы в обменных процессах из углеводов. Исключение составляют незаменимые полиненасыщенные жирные кислоты линолевая и линоленовая, входящие соот­ветственно в семейства со-6 и со-3. В этой связи нормируются как общее поступление ПНЖК: оно должно быть в интервале 3...7 % энергоценности рациона, так и потребность в линолевой кислоте: 6... 10 г/сут (это количество содержится в 1 столовой ложке расти­тельного масла). Норматив для линоленовой кислоты не установ­лен, но ее должно поступать не меньше 10% от содержания в пище линолевой кислоты.

2.4. Углеводы и их значение в питании

Углеводы являются основными энергонесущими макронутриентами в питании человека, обеспечивая 50...70% общей энерге­тической ценности рациона. Они способны при метаболизации образовывать макроэргические соединения, причем как в аэроб­ных, так и анаэробных условиях. В результате метаболизации 1г углеводов организм получает энергию, эквивалентную 4 ккал. Об­мен углеводов тесно связан с обменом жиров и белков, что обес­печивает их взаимные превращения. При умеренном недостатке углеводов в питании депонированные жиры, а при глубоком де­фиците (менее 50 г/сут) и аминокислоты (как свободные, так и из состава мышечных белков) вовлекаются в процесс глюконеогенеза, приводящий к получению необходимой организму энер­гии. В обратной ситуации происходит активация липонеогенеза и из лишних углеводов синтезируются жирные кислоты, отклады­вающиеся в депо.

Наряду с основной энергетической функцией углеводы уча­ствуют в пластическом обмене. Глюкоза и ее метаболиты (сиаловые кислоты, аминосахара) являются составными частями гликопротеидов, к которым относится большинство белковых соеди­нений крови (трансферрин, иммуноглобулины), ряд гормонов, ферментов, факторов свертывания крови. Гликопротеиды, а так­же гликолипиды участвуют вместе с белками и липидами в струк­турной и функциональной организации биомембран и играют при этом ведущую роль в процессах клеточной рецепции гормонов и других биологически активных соединений и в межклеточном вза­имодействии, имеющем существенное значение для нормального клеточного роста, дифференцировки и иммунитета. Углеводы пищи также являются предшественниками гликогена и триглицеридов; они служат источником углеродного основания заменимых ами­нокислот, участвуют в построении коферментов, нуклеиновых кислот, аденозинтрифосфорной кислоты (АТФ) и других биоло­гически важных соединений. Углеводы оказывают антикетогенное действие, стимулируя окисление ацетилкоэнзима А, образующе­гося при окислении жирных кислот.

Углеводы — это полиатомные альдегидо- и кетоспирты. Они образуются в растениях при фотосинтезе и поступают в организм главным образом с растительными продуктами. Однако все боль­шее значение в питании приобретают добавленные углеводы, ко­торые чаше всего представлены сахарозой (или смесями других сахаров), получаемой промышленным способом и вводимой за­тем в пищевые рецептуры.

Все углеводы делятся по степени полимеризации на простые и сложные. К простым относятся так называемые сахара — моноса­хариды: гексозы (глюкоза, фруктоза, галактоза), пентозы (ксило­за, рибоза, дезоксирибоза) и дисахариды (лактоза, мальтоза, га­лактоза, сахароза).

Сложными углеводами являются олигосахариды, состоящие из нескольких (3...9) остатков моносахаридов (рафиноза, стахиоза, лактулоза, олигофруктоза) и полисахариды. Полисахариды пред­ставляют собой высокомолекулярные полимерные соединения, образованные из большого числа мономеров, в качестве которых выступают остатка моносахаридов. Полисахариды делятся на крах­мальные и некрахмальные, которые в свою очередь могут быть растворимыми и нерастворимыми.

Моно- и дисахариды. Они обладают сладким вкусом и поэтому называются сахарами. Степень сладости различных Сахаров неоди­накова. Если сладость сахарозы принять за 100 %, то сладость дру­гих Сахаров составит, %:

Фруктозы....................................................... 173

Глюкозы....................................................... 81

Мальтозы и галактозы................................ 32

Рафинозы.................................................... 23

Лактозы........................................................ 16

Полисахариды сладким вкусом не обладают.

Природными источниками простых углеводов являются фрук­ты, ягоды, овощи, плоды, в некоторых из которых содержание Сахаров достигает 4... 17 % (табл. 2.11).

Глюкоза (альдегидоспирт) является основным структурным мо­номером всех важнейших полисахаридов — крахмала, гликогена, целлюлозы. Она поступает с питанием изолированно в составе ягод, фруктов, плодов и овощей, а также в качестве компонента наиболее распространенных дисахаридов: сахарозы, мальтозы, лактозы. Глю­коза быстро и практически в полном объеме усваивается в желудоч­но-кишечном тракте, поступает в кровь и разносится ко всем орга­нам и тканям для окисления, сопряженного с образованием энер­гии. Уровень глюкозы в крови наряду с уровнем ряда аминокислот является сигналом для соответствующих структурголовного мозга, моделирующих аппетит и пищевое поведение человека. Избыток глю­козы быстро превращается в депонирующиеся триглицериды.

Таблица 2.11

Содержание природных сахаров в пищевых продуктах на 100 г, г (в порядке убывания)

Продукт Общий сахар Глюкоза Фруктоза Сахароза
  Фрукты, ягоды, цитрусовые  
Виноград 8,7... 17,3 3,3..8,6 4,9...7.8 0,1...0,9
Черешня 9,5... 16,0 5.1...8,7 4,2...7.2 0,2... 0,4
Яблоки 6...15 1,0...2,8 3,6...7,6 0,5...5,5
Бананы   2,67 2,67 7,0
Сливы 6,3... 10,8 1,4...3.6 0,6...2,2 3,6...7.2
Абрикосы 3,35... 10,4 0,5...2,0 0,3...0,84 2,45-8,45
Апельсины 7,1...9,7 1,8...2,9 1,9...3,1 2,9...3,7
Груши 5,8...9,7 0,5... 1,8 4,2...6,6 0,7-1,7
Малина 3,7...9,3 1,4...2,7 1,5...3,2 0,7-3,3
Персики 4,65...8,60 0,7... 1,4 0,6... 1,6 3-6
Грейпфрут 6...8 1,9...2,4 1,9. -.2,8 1,7-3,8
Черная 7,96 3,3 3,68 0,95
смородина        
Черника 4,8... 7,4 2,1...3,3 2,1...3,6 0,18-0,65
Клубника 3,95...5,90 1,45...2,40 1,1...2,8 0,3-2,5
    Овощи    
Свекла 7,0... 10,5 0,28 0,25 6,7...9,5
Дыня   1,1   5,9
Арбуз 8,7 2,4 4,3  
Лук репчатый 4,5...6,6 1,1...2,5 1...2 1,1...3,15
Морковь 3,9...5,8 1,3...2,1 1,2...1,5 0,8.-2,3
Капуста 3,1...5,4 1,6...2,6 1,3...2,3 0,1-0,6
белокочанная        
Тыква 4,42 1,69 1,43 1,3
Кукуруза 3,68 0,34 0,31 3,1
Томаты 2,3...3,4 1... 1,5 1,2.-1,75 0,04...0,24
Перец слад- 2,3...3,3 1,2...1,6 1...1,5 0,04-0,24
кий зеленый        
Артишоки 2,1 0,5 1,5 0,6

Фруктоза в отличие от глюкозы является кетоспиртом и обла­дает другой динамикой распределения и метаболизации в орга­низме. Она почти в два раза медленнее всасывается в кишечнике и в большей степени задерживается в печени. Фруктоза переходит в глюкозу в клеточных обменных процессах, но увеличение кон­центрации глюкозы в крови происходит при этом плавно и посте­пенно, с меньшим напряжением инсулярного аппарата. В то же время фруктоза по более короткому метаболическому пути по сравнению с глюкозой вовлекается в процессы липонеогенеза и спо­собствует отложению жира в депо. Этим объясняется ряд новых фактов полученных при изучении положительной динамики массы тела у лиц регулярно употребляющих продукты, обогащенные пищевыми компонентами, содержащими фруктозу (мальтодекстриновые кукурузные сиропы). Чрезмерное поступление фруктозы приводит к увеличению концентрации в крови С-пептида, харак­теризующего степень инсулинрезистентности при развитии сахар­ного диабета второго типа. Фруктоза содержится в пищевых про­дуктах как в свободном виде в меде и фруктах, так и в виде фруктозного полисахарида инулина в составе топинамбура (земляной груши), цикория и артишоков.

Галактоза поступает в организм в составе молочного сахара (лактозы). В свободном виде она может находиться в некоторых ферментированных молочных продуктах, таких как йогурты. Га­лактоза превращается в печени в глюкозу.

Основным, промышленно производимым дисахаридом являет­ся сахароза, или столовый сахар. Сырьем для его производства слу­жат сахарная свекла (14... 25% сахара) и сахарный тростник (10..15% сахара). Натуральными источниками сахарозы в пита­нии являются дыни, арбузы, некоторые овощи, ягоды и фрукты. Сахароза легко усваивается и быстро распадается на глюкозу и фруктозу, которые затем вовлекаются в присущие им обменные процессы.

Именно использование сахарозы в качестве существенного ком­понента многих продуктов (кондитерских изделий, конфет, дже­мов, десертов, мороженого, прохладительных напитков) приве­ло в настоящее время к увеличению доли моно- и дисахаридов в общем объеме поступающих углеводов в развитых странах до 50 % и выше (при рекомендуемых 20%). В результате на фоне снижа­ющихся энергозатрат увеличивается алиментарная нагрузка на инсулярный аппарат, повышается уровень инсулина в крови, ин­тенсифицируется отложение жира в депо, нарушается липидный профиль крови. Все это способствует увеличению риска развития сахарного диабета, ожирения, атеросклероза и многочисленных заболеваний, базирующихся на перечисленных патологических состояниях.

Лактоза является основным углеводом молока и молочных продуктов (состоит из молекул галактозы и глюкозы) и имеет большое значение в качестве источника углеводов для питания детей. У взрослых его доля в углеводном составе рациона значи­тельно снижается за счет широкого использования других источ­ников. К тому же у взрослых, а иногда и детей снижена актив­ность фермента лактазы, расщепляющего молочный сахар. Послед­ствиями непереносимости цельного молока и продуктов, содер­жащих его, являются диспептические расстройства. Использование в питании кисло-молочных продуктов (кефира, йогурта, сме­таны), а также творога и сыра, как правило, не вызывают подоб­ной клинической картины. Непереносимость молока отмечается у 30...35% взрослого населения Европы, в то время как у жителей Африки — более чем у 75 %.

Мальтоза, или солодовый сахар, в свободном виде встречается в меде, солоде, пиве, патоке и продуктах, изготавливаемых с до­бавлением патоки (кондитерские и хлебобулочные изделия). В орга­низме мальтоза представляет собой промежуточный продукт и обра­зуется в результате расщепления в желудочно-кишечном тракте полисахаридов. Затем она диссимилирует до двух молекул глюкозы. В некоторых фруктах (яблоках, грушах, персиках) и ряде ово­щей встречается спиртовая форма сахаров — сорбит, являющий­ся восстановленной формой глюкозы. Он способен поддерживать уровень глюкозы в крови, не вызывая чувства голода и не напря­гая инсулярный аппарат. Сорбит и другие многоатомные спирты, такие как ксилит, маннит или их смеси, обладая сладким вкусом (30...40 % сладости глюкозы), используются для производства ши­рокого ассортимента пищевых продуктов, в первую очередь для питания больных сахарным диабетом, а также жевательной ре­зинки. К недостаткам многоатомных спиртов относится их влия­ние на кишечник, выражающееся в послабляющем эффекте и повышенном газообразовании.

Олигосахариды. Олигосахариды, к которым относятся рафиноза, стахиоза, вербаскоза, в основном содержатся в бобовых и про­дуктах их технологической переработки, например в соевой муке, а также в незначительных количествах во многих овощах. Фрукто-олигосахариды встречаются в зерновых (пшенице, ржи), овощах (луке, чесноке, артишоках, спарже, ревене, цикории), а также в бананах и меде. К группе олигосахаридов также относятся мальто-декстрины, являющиеся основными компонентами промышленно производимых из полисахаридного сырья сиропов, паток. Од­ним из представителей олигосахаридов является лактулоза, обра­зующаяся из лактозы в процессе тепловой обработки молока, на­пример при выработке топленого и стерилизованного молока.

Олигосахариды практически не расщепляются в тонком ки­шечнике человека из-за отсутствия соответствующих ферментов. По этой причине они обладают свойствами пищевых волокон. Некоторые олигосахариды играют существенную роль в жизнедея­тельности нормальной микрофлоры толстого кишечника, что позволяет отнести их к пребиотикам — веществам, частично фер­ментирующимся некоторыми кишечными микроорганизмами и обеспечивающим поддержание нормального микробиоценоза ки­шечника.

Полисахариды. Основным усваиваемым полисахаридом явля­ется крахмал — пищевая основа зерновых, бобовых и картофеля.

Он представляет из себя сложный полимер (в качестве мономера, в котором находится глюкоза), состоящий из двух фракций: амилозы — линейного полимера (200...2000 мономеров) и амило-пектина — разветвленного полимера (10000... 1 000000 мономе­ров). Именно соотношение этих двух фракций в различных сырь­евых источниках крахмала и определяет его различные физико-химические и технологические характеристики, в частности рас­творимость в воде при разной температуре.

Для облегчения усвоения крахмала организмом продукт, со­держащий его, должен быть подвергнут тепловой обработке. При этом образуется крахмальный клейстер в явной форме, например кисель, или скрытом виде в составе пищевой композиции: каше, хлебе, макаронах, блюд из бобовых. Крахмальные полисахариды, поступившие с пищей в организм, подвергаются последователь­ной, начиная с ротовой полости, ферментации до мальтодекстринов, мальтозы и глюкозы с последующим практически пол­ным усвоением. Крахмал диссимилируется организмом достаточ­но длительный период и в отличие от моно- и дисахаридов не обеспечивает столь быстрое и выраженное повышение уровня глю­козы в крови. Однако основные пищевые источники крахмальных полисахаридов (хлеб, крупы, макароны, бобовые, картофель) поставляют в организм значительные количества аминокислот, витаминов и минеральных веществ и минимум жира. В то же время сахар не только не содержит незаменимых нутриентов, но и тре­бует для своей метаболизации в организме затрат дефицитных витаминов и других микронутриентов. Большинство сладких кон­дитерских изделий одновременно являются и источниками скры­того жира (торты, пирожные, вафли, печенье сдобное, шоко­лад).

В процессе тепловой обработки (выпечки, отваривания) и при охлаждении может образовываться так называемый резистентный (устойчивый к перевариванию) крахмал, количество которого зависит как от степени тепловой нагрузки, так от содержания в крахмале амилозы. Устойчивые к перевариванию крахмалы содер­жатся и в натуральных продуктах — их максимальное количество найдено в бобовых и картофеле. Вместе с олигосахаридами и некрахмальными полисахаридами они составляют углеводную груп­пу пищевых волокон.

В последние годы увеличился объем используемых в пищевой промышленности так называемых модифицированных крахмалов. Они отличаются от природных форм хорошей растворимостью в воде (независимо от температуры). Это достигается их предваритель­ной производственной ферментацией с образованием в конечной композиции различных декстринов. Модифицированные крахма­лы используют в виде пищевых добавок для достижения ряда тех­нологических целей: придания продукту заданного внешнего вида и стабильной формы, достижения необходимой вязкости и одно­родности.

Вторым перевариваемым полисахаридом является гликоген. Его пищевое значение невелико — с рационом поступает не более 10... 15 г гликогена в составе печени, мяса и рыбы. При созрева­нии мяса гликоген превращается в молочную кислоту.

У человека излишки глюкозы в первую очередь (до метаболиче­ской трансформации в жир) превращаются именно в гликоген — единственный резервный углевод животных тканей. В организме человека общее содержание гликогена составляет около 500 г (1/3 в печени, остальное количество в мышцах) — это суточный за­пас углеводов, используемый при их глубоком дефиците в пита­нии. Длительный дефицит гликогена в печени ведет к дисфунк­ции гепатоцитов и ее жировой инфильтрации.

Величина потребности в углеводах для человека определяет­ся их ведущей ролью в обеспечении организма энергией и не­желательностью синтеза глюкозы из жиров (а тем более из бел­ков) и находится в прямой зависимости от энергозатрат. Учи­тывая возможные индивидуальные особенности обмена веществ и уровень поступления жира, оптимальный уровень углеводов в питании находится в интервале 55...65% энергоценности рацио­на, т.е. в среднем составляет 150 г на 1000 ккал рациона. Для человека со средним уровнем энергозатрат это соответствует при­мерно 300...400 г углеводов в сутки.

Потребность человека с энергозатратами 2 800 ккал в углево­дах и их оптимальная групповая сбалансированность может быть в основном обеспечена:

1) ежедневным потреблением:

• 360 г хлеба и хлебобулочных изделий;

• 300 г картофеля;

• 400 г овощей, зелени, бобовых;

• 200 г фруктов, ягод;

• не более 60 г сахара (чем меньше — тем лучше);

2) еженедельным потреблением:

• 175 г круп;

• 140 г макаронных изделий.

Оценку адекватности обеспечения реальной потребности в уг­леводах взрослого человека необходимо проводить с использова­нием индикаторных параметров пищевого статуса: индекса массы тела и уровня гликозилированного гемоглобина А, повышение концентрации которого свидетельствует о длительном чрезмер­ном употреблении Сахаров, в том числе и у здорового человека.

С позиций оценки возможного влияния углеводного компо­нента рациона на параметры пищевого статуса, характеризующие углеводный обмен, целесообразно использовать данные о так на­зываемом гликемическом индексе (ГИ) — процентном показателе отражающем разницу в изменении концентрации глюкозы в сы­воротке крови в течение 2 ч после употребления какого-либо про­дукта по сравнению с аналогичным результатом после употребле­ния тест-продукта. В качестве тест-продукта обычно используют глюкозу (50 г) или пшеничный хлеб (порция, содержащая 50 г крахмала).

Гликемический индекс продуктов (табл. 2.12) зависит от мно­гих пищевых факторов:

• химической структуры и формы углеводов, входящих в со­став продукта;

Таблица 2.12





Дата публикования: 2014-11-03; Прочитано: 808 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.014 с)...