Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
Продукт | Порция, г | ЭПК, г | ДГК, г | Порция, обеспечивающая поступление 1г ЭПК + ДГК, г |
Сельдь | 1,06 | 0,75 | ||
Лосось | 0,86 | 0,62 | ||
Устрицы | 0,75 | 0,43 | ||
Форель | 0,40 | 0,44 | ||
Крабы | 0,24 | 0,10 | ||
Креветки | 0,15 | 0,12 | ||
Треска | 0,09 | 0,15 | ||
Рыбий жир (лососевый) | 0,13 | 0,09 |
Фосфолипиды и стерины. В состав пищевых липидов входят такие значимые группы веществ, как фосфолипиды и стерины. К группе фосфолипидов относятся лецитин (фосфотидилхолин), кефалин и сфингомиелин. Фосфолипиды состоят из глицерина, этерифицированного полиненасыщенными жирными кислотами и фосфорной кислотой, которая соединена с азотистым основанием. Фосфолипиды, поступающие с пищей, способствуют абсорбции триглицеридов пищи за счет мицеллообразования. Они полностью расщепляются в клетках кишечника, поэтому для организма имеет решающее значение их эндогенный синтез в печени и почках. Эндогенный синтез лецитина, в частности, лимитирован поступлением с рационом ПНЖК и холина.
Лецитин имеет большое значение в регулировании жирового обмена в печени — он относится к липотропным факторам питания, препятствующим жировой инфильтрации печени за счет активизации транспорта нейтральных жиров из гепатоцитов. К пищевым продуктам, содержащим максимальное количество предшественников синтеза лецитина и его самого, относятся нерафинированные растительные масла, яйца, морская рыба, печень, масло сливочное, птица, а также фосфатидные концентраты, получаемые как вторичное сырье при рафинировании масел и используемые для обогащения пищевых продуктов.
Стерины имеют сложное органическое строение: они представляют из себя гидроароматические нейтральные спирты. В животных жирах содержится холестерин, а в растительных — фитостерин. Наибольшей биологической активностью среди фитостеринов обладает. Он способен оказывать гипохолестеринемическое действие, снижая абсорбцию холестерина в результате образования с последним в кишечнике неусваиваемых комплексов. Показано также участие ситостеринов в организации биомембран. В растительных маслах содержится следующее количество β-ситостерина, в 100 г продукта:
Кукурузное……………………………………………... 0,4
Соевое................................................................... 0,3
Арахисовое............................................................. 0,3
Хлопковое............................................................... 0,4
Оливковое............................................................... 0,3
Подсолнечное......................................................... 0,2
Основным животным стерином является холестерин. В условиях сбалансированного питания его эндогенный синтез (биосинтез) из НЖК в печени составляет не менее 80%, остальной холестерин поступает с пищей. Оптимальным уровнем его поступления с рационом считается 0,3 г/сут. В обмене холестерина важную роль играют витамины: аскорбиновая кислота, В6, В12, фолиевая кислота, биофлавоноиды. Холестерин имеет ключевое значение в организации и нормальном функционировании биомембран, синтезе стероидных гормонов, кальциферолов, желчных кислот.
Последствия избыточного поступления жиров с пищей. Высокое поступление с пищей НЖК и собственно холестерина сопровождается повышением общей концентрации триглицеридов и жирных кислот в крови, увеличением количества циркулирующих в крови липопротеинов.
Все это ведет к гиперлипидемии, а в дальнейшем к развитию дислипопротеинемии — базовому нарушению пищевого статуса, лежащего в основе развития атеросклероза, сахарного диабета и избыточной массы тела и ожирения. Дислипопротеинемия — это нарушение соотношения различных фракций липопротеидов и триглицеридов, циркулирующих в крови, ведущее в различных соотношениях к повышению как абсолютного, так и относительного количества липопротеидов низкой и очень низкой плотности (ЛПНП и ЛПОНП) и триглицеридов при одновременном снижении количества ЛПВП. Последние относятся к компонентам, снижающим атерогенность холестерина.
С биохимических позиций очень важно, что именно избыточное поступление с пищей лауриновой, миристиновой и пальмитиновой жирных кислот ведет к развитию гиперхолестеринемии и росту концентрации в крови наиболее атерогенных ЛПНП.Стеариновая кислота не участвует в построении ЛПНП и не обладает гиперхолестеринемическим эффектом.
Одновременное с ростом ЛПНП снижение концентрации ЛПВП отмечено при чрезмерном употреблении с пищей трансизомеров жирных кислот. В природных жирах они практически отсутствуют, за исключением небольшого содержания в мясе и молоке коров и овец — у этих животных происходит частичная изомеризация природных жирных кислот в желудке. Основная же масса трансизомеров образуется при гидрогенезации ПНЖК — разрыве двойных связей атомами водорода при производстве маргарина или так называемых мягких масел (состоящих из комбинации растительных и животных жиров). Длинноцепочечные жирные кислоты пищи, поступающие в организм в виде трансизомеров, например транс- 18:1, не могут включаться в биосинтез биологически активных клеточных регуляторов (простагландинов и лейкотриенов), а используются лишь в качестве энергетического субстрата.
При поступлении жира в избыточном по сравнению с потребностью организма количестве также стимулируется глюконеогенез. Последнее обстоятельство приводит к снижению степени утилизации «углеводной» глюкозы из крови, увеличению нагрузки на инсулярный аппарат и проявляется у здорового человека в росте концентрации гликозилированного гемоглобина А.,..
С гигиенических позиций, учитывая, что человек не питается отдельными жирными кислотами, гиперлипидемия и дислипопротеинемия, а также метаболическая гипергликемия должны рассматриваться как результат избыточного поступления с пишей всего объема жировых продуктов и продуктов, содержащих скрытый жир, независимо от их природы и жирно-кислотного состава.
В природе не существует «идеального» с позиций оптимального питания источника жира. Жирно-кислотный состав всех используемых растительных масел наряду со значительным содержанием МНЖК и ПНЖК включает в себя и существенные количества среднецепочечных НЖК (10... 15 % и более).
Морская рыба в настоящее время является единственным источником жира, адекватное увеличение употребления которого взамен жира животного происхождения и растительного масла может рассматриваться как эволюционно оправданный шаг. При этом, однако, следует учитывать реальную возможность интенсификации прооксидантной нагрузки на организм, связанной с действием двух факторов:
• наличием относительно большого количества ПНЖК с высокой степенью ненасыщенности (пять и шесть двойных связей), обладающих в силу этого большой способностью к окислению;
• отсутствием в жире рыб основного антиоксиданта — витамина Е.
Немаловажной является проблема безопасности рыбного сырья в плане контроля над остаточными количествами токсичных элементов, полихлорированных бифенилов и других контаминантов, а также природных токсинов (это особенно актуально при возможном использовании нетрадиционных видов морских рыб и других морепродуктов).
Еще один способ оптимизации жирно-кислотного состава пищевых продуктов связан с возможностями селекции и генной инженерии в рамках современной биотехнологии. Так, в результате обычной селекционной работы уже получены высокоолеиновое подсолнечное масло и низкоэруковое рапсовое. В настоящее время ведутся научно-практические разработки для создания на основе генной модификации масличных и зерновых культур (в первую очередь сои, рапса и кукурузы) с заданным составом жирных кислот.
Учитывая возможные индивидуальные особенности обмена веществ, оптимальный уровень жира находится в интервале 20... 30 % от энергетической ценности рациона, т. е. не должен превышать 35 г на 1000 ккал рациона. Для человека со средним уровнем энергозатрат это соответствует примерно 70... 100 г жира в сутки.
Большинство липидных соединений организма человека могут при необходимости быть синтезированы в обменных процессах из углеводов. Исключение составляют незаменимые полиненасыщенные жирные кислоты линолевая и линоленовая, входящие соответственно в семейства со-6 и со-3. В этой связи нормируются как общее поступление ПНЖК: оно должно быть в интервале 3...7 % энергоценности рациона, так и потребность в линолевой кислоте: 6... 10 г/сут (это количество содержится в 1 столовой ложке растительного масла). Норматив для линоленовой кислоты не установлен, но ее должно поступать не меньше 10% от содержания в пище линолевой кислоты.
2.4. Углеводы и их значение в питании
Углеводы являются основными энергонесущими макронутриентами в питании человека, обеспечивая 50...70% общей энергетической ценности рациона. Они способны при метаболизации образовывать макроэргические соединения, причем как в аэробных, так и анаэробных условиях. В результате метаболизации 1г углеводов организм получает энергию, эквивалентную 4 ккал. Обмен углеводов тесно связан с обменом жиров и белков, что обеспечивает их взаимные превращения. При умеренном недостатке углеводов в питании депонированные жиры, а при глубоком дефиците (менее 50 г/сут) и аминокислоты (как свободные, так и из состава мышечных белков) вовлекаются в процесс глюконеогенеза, приводящий к получению необходимой организму энергии. В обратной ситуации происходит активация липонеогенеза и из лишних углеводов синтезируются жирные кислоты, откладывающиеся в депо.
Наряду с основной энергетической функцией углеводы участвуют в пластическом обмене. Глюкоза и ее метаболиты (сиаловые кислоты, аминосахара) являются составными частями гликопротеидов, к которым относится большинство белковых соединений крови (трансферрин, иммуноглобулины), ряд гормонов, ферментов, факторов свертывания крови. Гликопротеиды, а также гликолипиды участвуют вместе с белками и липидами в структурной и функциональной организации биомембран и играют при этом ведущую роль в процессах клеточной рецепции гормонов и других биологически активных соединений и в межклеточном взаимодействии, имеющем существенное значение для нормального клеточного роста, дифференцировки и иммунитета. Углеводы пищи также являются предшественниками гликогена и триглицеридов; они служат источником углеродного основания заменимых аминокислот, участвуют в построении коферментов, нуклеиновых кислот, аденозинтрифосфорной кислоты (АТФ) и других биологически важных соединений. Углеводы оказывают антикетогенное действие, стимулируя окисление ацетилкоэнзима А, образующегося при окислении жирных кислот.
Углеводы — это полиатомные альдегидо- и кетоспирты. Они образуются в растениях при фотосинтезе и поступают в организм главным образом с растительными продуктами. Однако все большее значение в питании приобретают добавленные углеводы, которые чаше всего представлены сахарозой (или смесями других сахаров), получаемой промышленным способом и вводимой затем в пищевые рецептуры.
Все углеводы делятся по степени полимеризации на простые и сложные. К простым относятся так называемые сахара — моносахариды: гексозы (глюкоза, фруктоза, галактоза), пентозы (ксилоза, рибоза, дезоксирибоза) и дисахариды (лактоза, мальтоза, галактоза, сахароза).
Сложными углеводами являются олигосахариды, состоящие из нескольких (3...9) остатков моносахаридов (рафиноза, стахиоза, лактулоза, олигофруктоза) и полисахариды. Полисахариды представляют собой высокомолекулярные полимерные соединения, образованные из большого числа мономеров, в качестве которых выступают остатка моносахаридов. Полисахариды делятся на крахмальные и некрахмальные, которые в свою очередь могут быть растворимыми и нерастворимыми.
Моно- и дисахариды. Они обладают сладким вкусом и поэтому называются сахарами. Степень сладости различных Сахаров неодинакова. Если сладость сахарозы принять за 100 %, то сладость других Сахаров составит, %:
Фруктозы....................................................... 173
Глюкозы....................................................... 81
Мальтозы и галактозы................................ 32
Рафинозы.................................................... 23
Лактозы........................................................ 16
Полисахариды сладким вкусом не обладают.
Природными источниками простых углеводов являются фрукты, ягоды, овощи, плоды, в некоторых из которых содержание Сахаров достигает 4... 17 % (табл. 2.11).
Глюкоза (альдегидоспирт) является основным структурным мономером всех важнейших полисахаридов — крахмала, гликогена, целлюлозы. Она поступает с питанием изолированно в составе ягод, фруктов, плодов и овощей, а также в качестве компонента наиболее распространенных дисахаридов: сахарозы, мальтозы, лактозы. Глюкоза быстро и практически в полном объеме усваивается в желудочно-кишечном тракте, поступает в кровь и разносится ко всем органам и тканям для окисления, сопряженного с образованием энергии. Уровень глюкозы в крови наряду с уровнем ряда аминокислот является сигналом для соответствующих структурголовного мозга, моделирующих аппетит и пищевое поведение человека. Избыток глюкозы быстро превращается в депонирующиеся триглицериды.
Таблица 2.11
Содержание природных сахаров в пищевых продуктах на 100 г, г (в порядке убывания)
Продукт | Общий сахар | Глюкоза | Фруктоза | Сахароза |
Фрукты, | ягоды, цитрусовые | |||
Виноград | 8,7... 17,3 | 3,3..8,6 | 4,9...7.8 | 0,1...0,9 |
Черешня | 9,5... 16,0 | 5.1...8,7 | 4,2...7.2 | 0,2... 0,4 |
Яблоки | 6...15 | 1,0...2,8 | 3,6...7,6 | 0,5...5,5 |
Бананы | 2,67 | 2,67 | 7,0 | |
Сливы | 6,3... 10,8 | 1,4...3.6 | 0,6...2,2 | 3,6...7.2 |
Абрикосы | 3,35... 10,4 | 0,5...2,0 | 0,3...0,84 | 2,45-8,45 |
Апельсины | 7,1...9,7 | 1,8...2,9 | 1,9...3,1 | 2,9...3,7 |
Груши | 5,8...9,7 | 0,5... 1,8 | 4,2...6,6 | 0,7-1,7 |
Малина | 3,7...9,3 | 1,4...2,7 | 1,5...3,2 | 0,7-3,3 |
Персики | 4,65...8,60 | 0,7... 1,4 | 0,6... 1,6 | 3-6 |
Грейпфрут | 6...8 | 1,9...2,4 | 1,9. -.2,8 | 1,7-3,8 |
Черная | 7,96 | 3,3 | 3,68 | 0,95 |
смородина | ||||
Черника | 4,8... 7,4 | 2,1...3,3 | 2,1...3,6 | 0,18-0,65 |
Клубника | 3,95...5,90 | 1,45...2,40 | 1,1...2,8 | 0,3-2,5 |
Овощи | ||||
Свекла | 7,0... 10,5 | 0,28 | 0,25 | 6,7...9,5 |
Дыня | 1,1 | 5,9 | ||
Арбуз | 8,7 | 2,4 | 4,3 | |
Лук репчатый | 4,5...6,6 | 1,1...2,5 | 1...2 | 1,1...3,15 |
Морковь | 3,9...5,8 | 1,3...2,1 | 1,2...1,5 | 0,8.-2,3 |
Капуста | 3,1...5,4 | 1,6...2,6 | 1,3...2,3 | 0,1-0,6 |
белокочанная | ||||
Тыква | 4,42 | 1,69 | 1,43 | 1,3 |
Кукуруза | 3,68 | 0,34 | 0,31 | 3,1 |
Томаты | 2,3...3,4 | 1... 1,5 | 1,2.-1,75 | 0,04...0,24 |
Перец слад- | 2,3...3,3 | 1,2...1,6 | 1...1,5 | 0,04-0,24 |
кий зеленый | ||||
Артишоки | 2,1 | 0,5 | 1,5 | 0,6 |
Фруктоза в отличие от глюкозы является кетоспиртом и обладает другой динамикой распределения и метаболизации в организме. Она почти в два раза медленнее всасывается в кишечнике и в большей степени задерживается в печени. Фруктоза переходит в глюкозу в клеточных обменных процессах, но увеличение концентрации глюкозы в крови происходит при этом плавно и постепенно, с меньшим напряжением инсулярного аппарата. В то же время фруктоза по более короткому метаболическому пути по сравнению с глюкозой вовлекается в процессы липонеогенеза и способствует отложению жира в депо. Этим объясняется ряд новых фактов полученных при изучении положительной динамики массы тела у лиц регулярно употребляющих продукты, обогащенные пищевыми компонентами, содержащими фруктозу (мальтодекстриновые кукурузные сиропы). Чрезмерное поступление фруктозы приводит к увеличению концентрации в крови С-пептида, характеризующего степень инсулинрезистентности при развитии сахарного диабета второго типа. Фруктоза содержится в пищевых продуктах как в свободном виде в меде и фруктах, так и в виде фруктозного полисахарида инулина в составе топинамбура (земляной груши), цикория и артишоков.
Галактоза поступает в организм в составе молочного сахара (лактозы). В свободном виде она может находиться в некоторых ферментированных молочных продуктах, таких как йогурты. Галактоза превращается в печени в глюкозу.
Основным, промышленно производимым дисахаридом является сахароза, или столовый сахар. Сырьем для его производства служат сахарная свекла (14... 25% сахара) и сахарный тростник (10..15% сахара). Натуральными источниками сахарозы в питании являются дыни, арбузы, некоторые овощи, ягоды и фрукты. Сахароза легко усваивается и быстро распадается на глюкозу и фруктозу, которые затем вовлекаются в присущие им обменные процессы.
Именно использование сахарозы в качестве существенного компонента многих продуктов (кондитерских изделий, конфет, джемов, десертов, мороженого, прохладительных напитков) привело в настоящее время к увеличению доли моно- и дисахаридов в общем объеме поступающих углеводов в развитых странах до 50 % и выше (при рекомендуемых 20%). В результате на фоне снижающихся энергозатрат увеличивается алиментарная нагрузка на инсулярный аппарат, повышается уровень инсулина в крови, интенсифицируется отложение жира в депо, нарушается липидный профиль крови. Все это способствует увеличению риска развития сахарного диабета, ожирения, атеросклероза и многочисленных заболеваний, базирующихся на перечисленных патологических состояниях.
Лактоза является основным углеводом молока и молочных продуктов (состоит из молекул галактозы и глюкозы) и имеет большое значение в качестве источника углеводов для питания детей. У взрослых его доля в углеводном составе рациона значительно снижается за счет широкого использования других источников. К тому же у взрослых, а иногда и детей снижена активность фермента лактазы, расщепляющего молочный сахар. Последствиями непереносимости цельного молока и продуктов, содержащих его, являются диспептические расстройства. Использование в питании кисло-молочных продуктов (кефира, йогурта, сметаны), а также творога и сыра, как правило, не вызывают подобной клинической картины. Непереносимость молока отмечается у 30...35% взрослого населения Европы, в то время как у жителей Африки — более чем у 75 %.
Мальтоза, или солодовый сахар, в свободном виде встречается в меде, солоде, пиве, патоке и продуктах, изготавливаемых с добавлением патоки (кондитерские и хлебобулочные изделия). В организме мальтоза представляет собой промежуточный продукт и образуется в результате расщепления в желудочно-кишечном тракте полисахаридов. Затем она диссимилирует до двух молекул глюкозы. В некоторых фруктах (яблоках, грушах, персиках) и ряде овощей встречается спиртовая форма сахаров — сорбит, являющийся восстановленной формой глюкозы. Он способен поддерживать уровень глюкозы в крови, не вызывая чувства голода и не напрягая инсулярный аппарат. Сорбит и другие многоатомные спирты, такие как ксилит, маннит или их смеси, обладая сладким вкусом (30...40 % сладости глюкозы), используются для производства широкого ассортимента пищевых продуктов, в первую очередь для питания больных сахарным диабетом, а также жевательной резинки. К недостаткам многоатомных спиртов относится их влияние на кишечник, выражающееся в послабляющем эффекте и повышенном газообразовании.
Олигосахариды. Олигосахариды, к которым относятся рафиноза, стахиоза, вербаскоза, в основном содержатся в бобовых и продуктах их технологической переработки, например в соевой муке, а также в незначительных количествах во многих овощах. Фрукто-олигосахариды встречаются в зерновых (пшенице, ржи), овощах (луке, чесноке, артишоках, спарже, ревене, цикории), а также в бананах и меде. К группе олигосахаридов также относятся мальто-декстрины, являющиеся основными компонентами промышленно производимых из полисахаридного сырья сиропов, паток. Одним из представителей олигосахаридов является лактулоза, образующаяся из лактозы в процессе тепловой обработки молока, например при выработке топленого и стерилизованного молока.
Олигосахариды практически не расщепляются в тонком кишечнике человека из-за отсутствия соответствующих ферментов. По этой причине они обладают свойствами пищевых волокон. Некоторые олигосахариды играют существенную роль в жизнедеятельности нормальной микрофлоры толстого кишечника, что позволяет отнести их к пребиотикам — веществам, частично ферментирующимся некоторыми кишечными микроорганизмами и обеспечивающим поддержание нормального микробиоценоза кишечника.
Полисахариды. Основным усваиваемым полисахаридом является крахмал — пищевая основа зерновых, бобовых и картофеля.
Он представляет из себя сложный полимер (в качестве мономера, в котором находится глюкоза), состоящий из двух фракций: амилозы — линейного полимера (200...2000 мономеров) и амило-пектина — разветвленного полимера (10000... 1 000000 мономеров). Именно соотношение этих двух фракций в различных сырьевых источниках крахмала и определяет его различные физико-химические и технологические характеристики, в частности растворимость в воде при разной температуре.
Для облегчения усвоения крахмала организмом продукт, содержащий его, должен быть подвергнут тепловой обработке. При этом образуется крахмальный клейстер в явной форме, например кисель, или скрытом виде в составе пищевой композиции: каше, хлебе, макаронах, блюд из бобовых. Крахмальные полисахариды, поступившие с пищей в организм, подвергаются последовательной, начиная с ротовой полости, ферментации до мальтодекстринов, мальтозы и глюкозы с последующим практически полным усвоением. Крахмал диссимилируется организмом достаточно длительный период и в отличие от моно- и дисахаридов не обеспечивает столь быстрое и выраженное повышение уровня глюкозы в крови. Однако основные пищевые источники крахмальных полисахаридов (хлеб, крупы, макароны, бобовые, картофель) поставляют в организм значительные количества аминокислот, витаминов и минеральных веществ и минимум жира. В то же время сахар не только не содержит незаменимых нутриентов, но и требует для своей метаболизации в организме затрат дефицитных витаминов и других микронутриентов. Большинство сладких кондитерских изделий одновременно являются и источниками скрытого жира (торты, пирожные, вафли, печенье сдобное, шоколад).
В процессе тепловой обработки (выпечки, отваривания) и при охлаждении может образовываться так называемый резистентный (устойчивый к перевариванию) крахмал, количество которого зависит как от степени тепловой нагрузки, так от содержания в крахмале амилозы. Устойчивые к перевариванию крахмалы содержатся и в натуральных продуктах — их максимальное количество найдено в бобовых и картофеле. Вместе с олигосахаридами и некрахмальными полисахаридами они составляют углеводную группу пищевых волокон.
В последние годы увеличился объем используемых в пищевой промышленности так называемых модифицированных крахмалов. Они отличаются от природных форм хорошей растворимостью в воде (независимо от температуры). Это достигается их предварительной производственной ферментацией с образованием в конечной композиции различных декстринов. Модифицированные крахмалы используют в виде пищевых добавок для достижения ряда технологических целей: придания продукту заданного внешнего вида и стабильной формы, достижения необходимой вязкости и однородности.
Вторым перевариваемым полисахаридом является гликоген. Его пищевое значение невелико — с рационом поступает не более 10... 15 г гликогена в составе печени, мяса и рыбы. При созревании мяса гликоген превращается в молочную кислоту.
У человека излишки глюкозы в первую очередь (до метаболической трансформации в жир) превращаются именно в гликоген — единственный резервный углевод животных тканей. В организме человека общее содержание гликогена составляет около 500 г (1/3 в печени, остальное количество в мышцах) — это суточный запас углеводов, используемый при их глубоком дефиците в питании. Длительный дефицит гликогена в печени ведет к дисфункции гепатоцитов и ее жировой инфильтрации.
Величина потребности в углеводах для человека определяется их ведущей ролью в обеспечении организма энергией и нежелательностью синтеза глюкозы из жиров (а тем более из белков) и находится в прямой зависимости от энергозатрат. Учитывая возможные индивидуальные особенности обмена веществ и уровень поступления жира, оптимальный уровень углеводов в питании находится в интервале 55...65% энергоценности рациона, т.е. в среднем составляет 150 г на 1000 ккал рациона. Для человека со средним уровнем энергозатрат это соответствует примерно 300...400 г углеводов в сутки.
Потребность человека с энергозатратами 2 800 ккал в углеводах и их оптимальная групповая сбалансированность может быть в основном обеспечена:
1) ежедневным потреблением:
• 360 г хлеба и хлебобулочных изделий;
• 300 г картофеля;
• 400 г овощей, зелени, бобовых;
• 200 г фруктов, ягод;
• не более 60 г сахара (чем меньше — тем лучше);
2) еженедельным потреблением:
• 175 г круп;
• 140 г макаронных изделий.
Оценку адекватности обеспечения реальной потребности в углеводах взрослого человека необходимо проводить с использованием индикаторных параметров пищевого статуса: индекса массы тела и уровня гликозилированного гемоглобина А1с, повышение концентрации которого свидетельствует о длительном чрезмерном употреблении Сахаров, в том числе и у здорового человека.
С позиций оценки возможного влияния углеводного компонента рациона на параметры пищевого статуса, характеризующие углеводный обмен, целесообразно использовать данные о так называемом гликемическом индексе (ГИ) — процентном показателе отражающем разницу в изменении концентрации глюкозы в сыворотке крови в течение 2 ч после употребления какого-либо продукта по сравнению с аналогичным результатом после употребления тест-продукта. В качестве тест-продукта обычно используют глюкозу (50 г) или пшеничный хлеб (порция, содержащая 50 г крахмала).
Гликемический индекс продуктов (табл. 2.12) зависит от многих пищевых факторов:
• химической структуры и формы углеводов, входящих в состав продукта;
Таблица 2.12
Дата публикования: 2014-11-03; Прочитано: 826 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!