Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Биологическая ценность пищевых продуктов



Пищевой продукт Лимитирующая аминокислота Скор, %
Мука:    
пшеничная 1-го сорта Лизин, треонин 45, 75
ржаная То же 64, 72
Крупа:    
гречневая » 76, 79
рисовая » 68, 86
перловая Треонин, лизин 56, 59
«Геркулес» Лизин, треонин 69, 80
Кукуруза Лизин, треонин, 44, 60, 67
  триптофан  
Горох (фасоль) Метионин, цистеин 64 (59)

Окончание табл. 2.5

Пищевой продукт Лимитирующая аминокислота Скор, %
Хлеб:    
ржаной Лизин, треонин 61,71
пшеничныйиз муки 1-го То же 47, 76
сорта    
Макаронные изделия » 44, 75
Миндаль » 43, 60
Фундук Метионин, цистеин. 46, 59, 85
  лизин, треонин  
Грецкие орехи Лизин, метионин, 51, 78, 94
  цистеин, треонин  
Молоко:    
коровье Метионин, цистеин  
козье, кобылье, овечье Нет -
Творог нежирный Метионин, цистеин  
Сливки, сметана Нет -
Кефир, йогурт Метионин, цистеин  
Сыр твердый То же  
Семена подсолнечника Лизин, изолейцин 62, 84
Арахис Лизин, метионин, 65, 67
  цистеин  
Белок пищевой соевый Метионин, цистеин, 84, 86
  валин  
Картофель Метионин, цистеин  
Капуста белокочанная Лейцин, метионин, 51, 67
  цистеин  
Морковь Метионин, цистеин, 46, 48
  лейцин  
Баклажаны То же 43, 60
Свекла Лейцин, метионин. 64, 67
  цистеин  
Яблоки Метионин, цистеин, 57, 60
  валин  
Апельсины Лейцин, метионин, 32, 70
  цистеин  
Грибы белые свежие Валин, метионин, 42, 52
  цистеин  
Говядина, баранина, Нет -
свинина    
Вареные колбасы, сосиски То же -
Птица » -
Яйца » -
Рыба » -
Кальмары, креветки, » -
моллюски    

Однако биологическая ценность пищевых белков зависит не только от наличия в них оптимального количества и соотношения незаменимых аминокислот, но и от их биодоступности. Биодо­ступность аминокислот может значительно изменяться: снижать­ся при наличии в пище ингибиторов протеаз или в результате химической трансформации аминокислот, происходящей в про­цессе технологической переработки пищи. Ингибиторы протеолитических ферментов, в частности, присутствуют в составе бо­бовых, например, в сое или соевой муке, и лимитируют доступ­ность аминокислот из продуктов, их содержащих. При высокой и длительной тепловой обработке продуктов (стерилизации, лиофильной и экструзионной сушке и т.п.), богатых углеводами и белками (комбинированные мясорастительные, творожнорастительные и другие подобные композиции), в них снижается коли­чество доступного лизина в результате реакции меланоидинообразования: свободные NH2-группы лизина взаимодействуют с кар­бонильными группами углеводов (реакция Майяра).

Важным показателем качества пищевого белка является его перевариваемость ферментами желудочно-кишечного тракта — показателя соответствия химической структуре протеина и его конформационной доступности, протеолитическим ферментам организма. По скорости переваривания белки можно расположить в следующем порядке:

1) яичные, рыбные и молочные;

2) мясные;

3) зерновых (хлеб и крупы);

4) бобовых и грибов.

Использование биологического метода оценки качества проте­ина позволяет более точно по сравнению с расчетными химиче­скими методами проанализировать не только аминограмму, но и биодоступность исследуемого белка, учитывая параметры его перевариваемости и усвояемости. Использование биологических ме­тодов особенно важно при оценке качества новых комбинирован­ных пищевых композиций и нетрадиционных (и новых) источни­ков белков.

Биологическая оценка качества белка производится в экспери­менте с участием белых растущих крыс (как правило, линии Вистар).

В многочисленных экспериментальных исследованиях установле­но, что биологическая ценность животных продуктов, содержащих полноценный белок, выше, чем у растительных продуктов. Так, ус­вояемость белков достигает, %: яиц и молока — 96; мяса и рыбы — 95; хлеба из муки 1 и 2-го сорта — 85; овощей — 80; картофеля, бобовых, хлеба из обойной муки —70. Плохая перевариваемость и усвояемость растительных белков связана со значительным содер­жанием целлюлозы, лигнина и других малоферментируемых пищеварительной системой человека компонентов, которые в ряде случаев (как у бобовых и грибов) окружают белковые молекулы полисахаридными оболочками. В бобовых (особенно в сое) содер­жатся значительные количества ингибиторов протеаз, которые инактивируются при достаточно длительной тепловой обработке. Однако при длительной тепловой обработке разрушается или сни­жается доступность ряда аминокислот, в первую очередь лизина и серосодержащих, что снижает биологическую ценность готового продукта или блюда.

Истинная биологическая ценность животных белков — степень их утилизации организмом — практически достигает 95...98%. Азот же из белка зерновых (и составе традиционного хлеба, круп) не утилизируется организмом более чем на 50 %. Исключением из используемых в питании растительных белков являются протеи­ны сои, имеющие показатели биологической ценности на уровне 80%.

Многие комбинированные продукты и блюда, содержащие смешанный белок, имеют высокие показатели биологической ценности. Например, комбинации молочных и растительных бел­ков (зерновых) позволяют ликвидировать дефицит лимитирующих аминокислот: небольшой недостаток серосодержащих кис­лот у молока и значительный недостаток лизина и треонина у зерновых. Добавление обезжиренного молока и молочной сыво­ротки в рецептуру хлебобулочных изделий, а сухого обрата в ком­бинированные (из зерна нескольких злаков) крупы, позволяет не только увеличить общее количество незаменимых аминокис­лот, но и сбалансировать аминограмму готового продукта, по­высив его биологическую ценность. Такую же целесообразность имеет комбинация творога с тестом (вареники, ватрушки, блин­чики), мяса с тестом (блинчики, пельмени, пирожки), каш с молоком, макарон с сыром, яиц с хлебом. Оптимальные соотно­шения животных и растительных белков дают, например, мясо с гречневой крупой (1:1) и мясо с картофелем (2,5:1). Комби­нация зерновых и бобовых (сои) также приводит к взаимному обогащению дефицитными аминокислотами (соответственно се­росодержащими и лизином). Не улучшают аминограмму такие рецептурные сочетания, как тесто с крупами, тесто с овощами (капустой, картофелем).

Болезни недостаточности и избыточности белкового питания и белкового метаболизма. Белковая недостаточность обычно связа­на с общим недоеданием (голодом) и чаще всего наблюдается у жителей беднейших и развивающихся стран. Она почти всегда со­четается с выраженным дефицитом энергии, поэтому данный алиментарный дисбаланс принято называть белково-энергетической недостаточностью. При этом отмечается недостаток продук­тов с высокими показателями пищевой ценности, главным образом животной группы, что приводит к развитию общего метабо­лического дисбаланса.

У новорожденных и детей младшего возраста белково-энергетическая недостаточность проявляется в форме квашиоркора и алиментарного маразма — заболеваний, встречающихся в бедней­ших странах.

Алиментарная дистрофия может развиться и у взрослого чело­века при длительном (несколько месяцев) существенном дефи­ците питания. Ее проявлениями, прежде всего, будут снижение массы тела (истощение), потеря работоспособности, глубокие гиповитаминозные состояния, снижение иммунитета. Подобная ситуа­ция может быть связана с кризисом в обеспечении населения (или отдельных лиц) продовольствием, например в периоды войн, стихийных бедствий и других чрезвычайных ситуаций. Отдельно описаны случаи алиментарной дистрофии, возникшей в резуль­тате нарушения обменных процессов при тяжелых заболеваниях или отказе от питания по разным (медицинским и социальным) причинам.

Вместе с тем не следует забывать об отрицательном влиянии избытка белка в питании. Избыток белков имеет наиболее выра­женные и относительно быстро проявляющиеся последствия по сравнению с избытком других макронутриентов (жиров и углево­дов). Это связано как с высокой реакционной способностью лиш­них аминокислот, так и с общими энергетическими нагрузками на организм, сопровождающими, как правило, высокое поступ­ление белка с соответствующими продуктами. Особенно чувстви­тельны к избытку протеина крайние возрастные группы (дети и престарелые), а также лица с некоторыми заболеваниями (почеч­ными патологиями, заболеваниями гепатобилиарной системы). При этом в первую очередь страдают печень и почки. В печени может развиваться жировая дистрофия и деструктивные процессы из-за перегрузки ее пищевыми аминокислотами, первично в ней кон­центрирующимися ипереаминирующимися. Почки функционально перегружаются из-за повышенного выделения остаточного азота (мочевина, мочевая кислота, креатинин) и нарушения кислот­но-щелочного баланса первичной мочи. В результате увеличива­ются потери кальция с мочой: каждый грамм лишнего белка при­водит к потере 2...20 мг кальция. При длительном избытке белка в рационе увеличивается риск развития мочекаменной болезни, подагры, ожирения. Последнее связано с тем, что излишнее коли­чество белка вовлекается впроцесс липонеогенеза. Очень вероят­но также развитие относительного гиповитаминоза В6, РР и А из-за их повышенного расхода в метаболизме белков или нарушения их обмена.

С белковой составляющей связан и ряд наследственных заболе­ваний, таких как фенилкетонурия, гистидинемия, гомоцистеинурия, алкаптонурия и целиакия: это генетически детерминиро­ванные энзимопатии.

Основные пути решения проблемы обеспечения населения бел­ком. Нетрадиционные и новые источники белка. Поиск новых и нетрадиционных источников продовольственного сырья связан главным образом с экологически обусловленной невозможностью, обеспечить население планеты необходимым объемом традици­онных продуктов питания. В этой связи основной проблемой явля­ется дефицит полноценного протеина, а вопрос получения и ра­ционального использования этого незаменимого и в то же время трудновоспроизводимого и дорогостоящего пищевого вещества относится к числу наиболее важных стратегических задач разви­тия человеческого общества.

Решение задачи по увеличению производства пищевого белка связана, во-первых, с интенсификацией традиционных способов его получения, во-вторых, с более широким использованием в питании человека нетрадиционных и новых белковых ресурсов.

В ближайшие десятилетия главным путем увеличения белковых ресурсов, по-видимому, останется традиционный, связанный с повышением продуктивности сельскохозяйственного производства (в том числе за счет селекции и биотехнологических приемов, основанных на генно-инженерных методах) и снижением потерь при переработке и обороте продовольственного сырья и пищевых продуктов.

Под нетрадиционными и новыми источниками белка, перспек­тивными для использования в питании, подразумевают протеинсодержащие продукты, являющиеся или отходами пищевого и кормового производства и малоутилизируемым пищевым сырь­ем, или совершенно новые ресурсы для получения белка.

К нетрадиционным источникам белка относятся:

• вторичные белоксодержащие продукты — обрат, молочная сыворотка, казеинаты, кровь и органы убойных животных, про­дукты переработки бобовых (соевые белковые продукты);

• отходы и побочные продукты пищевого и кормового произ­водства — бобовые культуры, отходы мельничных производств, шрот из семян подсолнечника, льна, хлопчатника, арахиса, сои, сафлора и некоторых других масличных культур, кукурузных за­родышей, томатов, винограда;

• малоутилизируемое и не используемое ранее пищевое сырье - некоторые виды рыб и морепродуктов, биомасса зеленых расте­ний, шрот из семян рапса и других крестоцветных, некоторые ткани и органы убойных животных.

Одноклеточные и многоклеточные водоросли, мицелий гри­бов, дрожжи, а также белки и аминокислоты микробиологи­ческого и химического синтеза являются новыми источниками белка.

Возможность использования для целей питания новых белко­вых ресурсов зависит от разработки двух взаимосвязанных про­блем: технологической и медицинской. Первая определяется кру­гом вопросов, касающихся изыскания белоксодержащих источ­ников, обоснования методов изолирования и концентрирования белка, разработки приемов рационального его использования в пищевом производстве. Вторая проблема связана с необходимостью анализа химического состава, изучением безопасности, определе­нием пищевой и биологической ценности и обоснованием опти­мальных путей применения новых белковых продуктов в питании. Наиболее сложный вопрос, по-видимому, заключается в поиске разумного баланса между технологической рациональностью и ги­гиенической оптимальностью использования нового белка.

Наиболее целесообразным конечным продуктом переработки протеин содержащего сырья являются: изоляты белка (не менее 90% протеина), получаемые выделением и растворением белка с последующим осаждением его в изоэлектрической точке; концен­траты белка (не менее 65 % протеина), получаемые очисткой со­ответствующего сырья от небелковых продуктов. Данные формы не только наиболее удобны для пищевых производств, но и со­держат наименьшие количества токсичных и антиалиментарных веществ, удаляемых при технологической переработке исходного сырья. Могут также использоваться белоксодержащие продукты с широким диапазоном содержания белка, такие как текстурат, гидролизат, мука.

Все потенциальные источники белка должны рассматриваться в качестве носителей как известных, так и новых токсических, аллергенных и антиалиментарных веществ. Кроме того, при выде­лении белков из этих источников могут применяться физические методы, химические вещества или технологические режимы, сни­жающие их биологическую ценность или контаминирующие их чужеродными соединениями.

В наиболее изученном и широко применяемом белоксодержащем сырье — белковых продуктах переработки сои (муке, изоляте, концентрате, текстурате) — содержится ряд биологически активных веществ и антиалиментарных факторов. Некоторые из них разрушаются при тепловой обработке (гемагглютенины, гойтрогены, ингибиторы трипсина), другие достаточно устойчивы [аллергены, эстрогенстимулирующие изофлавоны, неперевариваемые олигосахара (рафиноза, стахиоза, вербаскоза)], их концент­рация снижается прямо пропорционально очистке белкового про­дукта (наименьшее количество остается в изоляте). Все это требу­ет максимального внимания к технологии производства соевых белковых продуктов и оценке их качества.

Одной из актуальных проблем, с которой сталкиваются при разработке технологии получения белков из семян масличных культур, является достаточно частое обсеменение шротов микроско­пическими плесневыми грибками, продуцирующими микотоксины. В дополнение к микотоксинам шроты из семян подсолнечни­ка и арахиса могут содержать ингибиторы аргиназы и трипсина, а шрот из семян сафлора — лигнановые гликозиды. В семенах кун­жута определяются небольшие количества канцерогенных веществ (сезамол, сезамин), которые следует обязательно удалить при по­лучении белкового продукта. В шроте из семян хлопчатника содер­жатся природные токсичные вещества: циклопропеновые кисло­ты, госсипол.

Использование в питании человека белков из семян кресто­цветных (рапс, сурепка, горчица) ограничено из-за наличия в них глюкозинолатов, вызывающих гипертрофию щитовидной же­лезы, не корректируемую дополнительным введением йода (в от­личие от соевых белков). Кроме того, глюкозинолаты гидролизуются с образованием более токсичных нитрилов. Шрот, образу­ющийся после экстракции масла из семян клещевины, содержит токсичный белок рицин, алкалоид рицинин, а также гликопротеиды, являющиеся сильными аллергенами.

Сок листьев ряда растений (люцерны, картофеля, свеклы, бо­бовых) содержит высококачественные растворимые белки. Про­блемы использования белка из биомассы зеленых растений связа­ны главным образом с наличием в листьях и стеблях растений природных антиалиментарных и токсических веществ: ингибито­ров различных ферментов, антивитаминов, цианогенных гликозидов, деминерализующих веществ, оксалатов, эстрогенов, а также ксенобиотиков антропогенного происхождения (пестицидов, ком­понентов удобрений).

Вопрос о возможности использования с пищевыми целями белков одноклеточных организмов и аминокислотных смесей, по­лученных в результате дрожжевого, микробиологического и хи­мического синтеза, остается открытым.

Исследование качества сухой биомассы хлореллы, спирулины у людей показало достаточно хорошую переносимость этих продуктов при относительно небольших количествах потребле­ния. При использовании в пищу более высоких количеств на­блюдались нарушения функций желудочно-кишечного тракта и повышение уровня мочевой кислоты в крови и моче. В будущем решение проблемы может быть связано с получением изолирован­ного высокоочищенного белкового продукта из водорослей. В этом же направлении может быть решена задача использования мицелиальной (грибной) биомассы, содержащей в натуральном виде 30...40% небелкового азота.

Из всех перечисленных потенциальных источников белка про­мышленностью освоено в существенных масштабах производство лишь соевых и молочных белков.

В XXI в. в дополнение к растительным источникам пищевого белка более интенсивно будет изучаться возможность расширен­ного применения нетрадиционных морепродуктов. Однако их пи­щевое использование в настоящее время ограничено не столько качеством протеина (оно соответствует животному белку), сколько наличием в составе морепродуктов широкого перечня природных токсинов и антиалиментарных веществ органической природы.

Создание искусственной пиши на основе синтезированного de novo белка — задача отдаленного будущего. Для человека как биологического вида переход на качественно новый уровень пи­тания без ущерба здоровью возможен либо в результате тысяче­летней эволюции, либо при использовании искусственной пищи, абсолютно эквивалентной по структуре и химическому составу традиционным продуктам.





Дата публикования: 2014-11-03; Прочитано: 2388 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...