![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
|
1. 
2. Постоянный множитель можно выносить за знак определённого интеграла:

3. Определённый интеграл от суммы двух функций равен сумме определённых интегралов от этих функций:

4. При перестановке пределов интегрирования определённый интеграл меняет знак на противоположный:

5. Интеграл по отрезку равен сумме интегралов по его частям:
где a<c<b.
6. Теорема об оценке интеграла
Если
для
, тогда значения интеграла от этой функции не менее произведения m на длину отрезка и не более произведения M на длину отрезка.

7. Теорема о среднем значении
Если f(x) непрерывна на отрезке
, то существует такое значение
, что f(x0)=fср – среднее значение f на отрезке.

Дата публикования: 2014-11-03; Прочитано: 426 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!
