Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Метод интегрирования по частям



Пусть u = u(x), v = v(x) – дифференцируемы на D

d(u•v) = du•v + u•dv Þ ∫ d(u•v) = ∫du•v + ∫u•dv Þ u•v = ∫v•du + ∫u•dv Þ

∫u•dv = u•v - ∫v•du – формула интегрирования по частям

Применение данной формулы:

1. Pn (x)•φ(x)dx; Pn (x) – многочлен n-ой степени

а) φ(x) = sin ax u = Pn (x); dv = φ(x)dx

cos ax

eKx

b) φ(x) = обратные тригонометрические функции u = φ(x); dv = Pn (x)dx

logax

2. ekx•sin ax dx в этом случае любой из множителей можно принять

ekx•cos ax dx за u

11. Формула Ньютона-Лейбница:

Пусть функция y=f(x) непрерывна на отрезке [a;b] и F(x)- первообразная для f(x). Тогда:

∫(a по b) f(x)dx= F(b)-F(a)

12. Формула замены переменной в определенном интеграле:

Пусть функция x=A(t) определена и дифференцируема на промежутке T и X – множество ее значений, на котором определена функция f(x). Тогда если F(x) – первообразная для f(x) на X, то F(A(t))- первообразная для f(A9t))A’(t) на T, т.е. на множестве Т выполняется равенство:

∫f(x)dx│x=A(t) = ∫f(A(t))A’(t)dt

13. Формула интегрирования по частям для определенного интеграла:

Пусть u(x) и v(x) – две дифференцируемые функции на промежутке X. Тогда на Х выполняется формула интегрирования по частям:

∫udv=uv-∫vdu

14. Определение несобственного интеграла с бесконечным верхним пределом:

Пусть функция y=f(x) интегрируема на каждом конечном отрезке [a;b] (b>a). Тогда за несобственный интеграл принимают:

∫(a по +∞)f(x)dx= lim b→∞ ∫(а по b)f(x)dx

,когда b стремится к бесконечности.

15. Определение несобственного интеграла с бесконечным нижним пределом:

По аналогии с верхним вопросом можно рассмотреть несобственный интеграл с бесконечным нижним пределом, а именно:

∫(b по -∞)f(x)dx= lim a→-∞ ∫(b по a)f(x)dx

16. Определение несобственного интеграла от неограниченной функции на ограниченном промежутке:

17. Пространство Rⁿ

18. Расстояние в Rⁿ. Свойства расстояния.

В пространстве Rⁿ, где n>3, о расстоянии можно говорить лишь в условном смысле, так как точки в Rⁿ не имеют непосредственного геометрического истолкования. Расстояние определяется формулой:

ρ (p,q)= │p-q│=√(x1’- x1”)²+…+(xⁿ’-xⁿ”)²

, где p=(x1’, x2’, …, xⁿ’) и q=(x1”, x2”, …, xⁿ”) – две произвольные точки из Rⁿ.

Свойства:

1) ρ (p,q)>0, елси p ≠ q, и ρ (p,p)=0;

2) ρ (p,q)= ρ (q,p);

3) ρ (p,q)+ ρ (q,r)>= ρ (p,r), каковы бы ни были точки p,q и r. (свойство треугольника).

19. Окрестность точки в Rⁿ.

Пусть pₒ- точка в Rⁿ и ε – положительное число. Открытым шаром, или просто шаром радиуса ε с центром в pₒ называется множество всех точек, расстояние которых от pₒ меньше ε:

{p € Rⁿ │ ρ (pₒ,p)< ε}.

Шар радиуса ε с центром pₒ обозначается B(pₒ, ε) или U3(pₒ). Множество U3(pₒ) называют

ε–окрестностью точки pₒ.

20. Внутренние и граничные точки множества:

Пусть Х – множество в пространстве Rⁿ. Точка р называется:

-Внутренней точкой множества Х, если она содержится вместе с некоторой своей

ε–окрестностью;

-Внешней точкой по отношению к Х, если она является внутренней для дополнения Х в Rⁿ;

-Граничной точкой для Х, если она не является ни внутренней ни внешней точкой для Х, иначе говоря, если любая ее окрестность содержит как точки, принадлежащие Х, так и точки, не принадлежащие Х.

21. Открытые и замкнутые множества.

Множество X называется открытым, если все его точки внутренние.

Множество X называется закрытым, если оно содержит все свои граничные точки.

22. Изолированные и предельные точки множества.

Пусть X - множество в Rn. Точка p0 называется предельной для X, если в любой

ε-окрестности точки p0 имеются точки множества X, отличные от p0.

При этом сама точка p0 может как принадлежать, так и не принадлежать множеству X.

Точка p0 Î X называется изолированной точкой множества X, если у нее существует

ε-окрестность, в которой никаких других точек из X, кроме p0, нет.

Ясно, что любая точка множества Х является либо изолированной, либо предельной

для Х.

23. Ограниченные множества.

Множество X Rn называется ограниченным, если оно целиком содержится в некотором шаре.

Нетрудно показать, что ограниченность множества Х означает, что существует такое число C>0, что координаты любой точки p=(x1,x2,…,xn) из Х по модулю не превосходят С: |x1| .

24. Сходимость последовательности точек в Rn, ее эквивалентность покоординатной сходимости.

Пусть – последовательность точек в Rn. Мы говорим, что эта последовательность сходится к точке p0, если числовая последовательность имеет предел 0.

Пусть p1=(x1,y1), p2=(x2,y2),…- последовательность точек в . Мы скажем, что эта последовательность сходится к точке p0=(x0,y0), если числовая последовательность x1,x2,… сходится к числу x0, а числовая последовательность y1,y2,… - к числу y0.

25. Функция нескольких переменных.

?

26. Поверхности (линии) уровня функции нескольких переменных.

Линией уровня функции называют линию f(x,y)=C на координатной плоскости, в точках которой функция f принимает постоянное значение C.

При n>2 следует говорить не о линиях, а о множествах уровня. Множество уровня имеет уравнение f( и истолковывается как “ поверхность” в

27. Предел функции нескольких переменных.

Пусть на множестве X Rn задана функция f(p) и пусть p0 – предельная точка для Х. Число a называется пределом функции f в точке p0, если для любой сходящейся к p0 последовательности , где все pn p0, соответствующая числовая последовательность сходится к числу а.

Запись: , или в координатной форме:

28. Непрерывность функции нескольких переменных.

Функция f(p), определенная на множестве X Rn, называется непрерывной

в точке р0 Î X, если , или же, если p0 – изолированная точка множества Х.

Функция f(p), определенная на множестве X Rn, называется непрерывной на этом множестве, если она непрерывна в каждой точке множества Х.

29. Свойства функций, непрерывных на замкнутом ограниченном множестве: ограниченность, достижение наибольшего и наименьшего значений.

Если числовая функция f от n переменных задана на ограниченном и замкнутом множестве Х Rn, то она ограничена на этом множестве.

Если числовая функция f от n переменных задана на ограниченном и замкнутом множестве Х Rn, то существует точка p0 Î X, в которой f принимает свое наименьшее значение, и точка q0 Î X, в которой f принимает свое наибольшее значение на Х.

30. Частные производные функции нескольких переменных.

Частной производной функции нескольких переменных по одной из этих переменных называется предел отношения частного приращения функции к приращению соответствующей независимой переменной, когда это приращение стремится к нулю.

Частные производные функции z=f(x,y) в точке (x0,y0) обозначаются так:

z’x, dz/dx, f’x(x0,y0) – производная по x;

z’y, dz/dy, f’y(x0,y0) – производная по y.

31. Пусть D из Rn – область в Rn, содержащая с каждой своей точкой (x1, x2, …., xn) и все точки вида (tx1, tx2, …., txn) при t>0 функция f(x1, x2, …., xn) с такой областью определения D называется однородной степени λ, если для любого t>0 выполнятся равенство f (tx1, tx2, …., txn)=tλ f(x1, x2, …., xn).

Да, является. 2 степени. =t2

32. Пример однородной функции степени 3:

F (x,y)=x2

F (tx, ty)=t2x2√(tx*ty)=t3 F (x,y)

33. f (tx1, tx2,tx3)=tλ f(x1, x2, x3). u= f(x,y,z)

34. Пусть z=f(x;y) определена в некоторой области D и точка М(х00) – внутренняя точка D (М принадлежит D), тогда данная функция в данной точке будет иметь локальный минимум (максимум), если найдется e - окрестность точки М, что для всех внутренних точек этой окрестности, отличных от М(х00) выполняются неравенства:

f(x;y)>f(х00) – min

f(x;y)<f(х00) – max





Дата публикования: 2015-02-18; Прочитано: 277 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.01 с)...