Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Теорема о производной сложной функции



Пусть y = f(u), а u = u (x). Получаем функцию y, зависящую от аргумента x: y = f(u(x)). Последняя функция называется функцией от функции или сложной функцией.

Областью определения функции y = f(u(x)) является либо вся область определения функции u = u (x) либо та ее часть, в которой определяются значения u, не выходящие из области определения функции y = f(u).

Операция "функция от функции" может проводиться не один раз, а любое число раз.

Установим правило дифференцирования сложной функции.

Теорема. Если функция u = u (x) имеет в некоторой точке x0 производную и принимает в этой точке значение u0 = u (x0), а функция y= f(u) имеет в точке u0 производную y 'u= f '(u0), то сложная функция y = f(u(x)) в указанной точке x0 тоже имеет производную, которая равна y 'x= f '(u0u '(x0), где вместо u должно быть подставлено выражение u = u (x).

Таким образом, производная сложной функции равна произведению производной данной функции по промежуточному аргументу u на производную промежуточного аргумента по x.

Доказательство. При фиксированном значении х 0 будем иметь u 0= u (x 0), у 0 =f(u 0 ). Для нового значения аргумента x0x:

Δ u = u (x0 + Δ x) – u (x 0), Δ y = f (u0u) – f (u0).

Т.к. u – дифференцируема в точке x0, то u – непрерывна в этой точке. Поэтому при Δ x →0 Δ u →0. Аналогично при Δ u →0 Δ y →0.

По условию . Из этого соотношения, пользуясь определением предела, получаем (при Δ u →0)

,

где α→0 при Δ u →0, а, следовательно, и при Δ x →0.

Перепишем это равенство в виде:

Δ y = y 'uΔ u +α·Δ u.

Полученное равенство справедливо и при Δ u =0 при произвольном α, так как оно превращается в тождество 0=0. При Δ u =0 будем полагать α=0. Разделим все члены полученного равенства на Δ x

.

По условию . Поэтому, переходя к пределу при Δ x →0, получим y 'x= y 'u·u 'x. Теорема доказана.






Дата публикования: 2015-01-26; Прочитано: 222 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...