Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Решение. Применяя свойства интеграла (линейность), т.е



Применяя свойства интеграла (линейность), т.е. , сводим ктабличному интегралу, получаем, что

где .

37. Пусть определена на . Разобьём на части с несколькими произвольными точками . Тогда говорят, что произведено разбиение отрезка Далее выберем произвольную точку , ,

Определённым интегралом от функции на отрезке называется предел интегральных сумм при стремлении ранга разбиения к нулю , если он существует независимо от разбиения и выбора точек , то есть

Если существует указанный предел, то функция называется интегрируемой на по Риману.

Прежде чем перейти к основным свойствам определенного интеграла, условимся, что a не превосходит b.

1. Для функции y = f(x), определенной при x = a, справедливо равенство .

То есть, значение определенного интеграла с совпадающими пределами интегрирования равно нулю. Это свойство является следствием определения интеграла Римана, так как в этом случае каждая интегральная сумма для любого разбиения промежутка [a; a] и любого выбора точек равна нулю, так как , следовательно, пределом интегральных сумм является ноль.

2. Для интегрируемой на отрезке [a; b] функции выполняется .

Другими словами, при перемене верхнего и нижнего пределов интегрирования местами значение определенного интеграла меняется на противоположное. Это свойство определенного интеграла также следует из понятия интеграла Римана, только нумерацию разбиения отрезка следует начинать с точки x = b.

3. для интегрируемых на отрезке [a; b] функций y = f(x) и y = g(x).





Дата публикования: 2015-01-25; Прочитано: 146 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.005 с)...