Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Непрерывность функции, имеющей производную



Если функция y = f (x) дифференцируема в некоторой точке x = x 0, то она в этой точке непрерывна.

Таким образом, в точках разрыва функция не может иметь производной. Обратное заключение неверно, т.е. из того, что в какой-нибудь точке x = x 0 функция y = f (x) непрерывна не следует, что она в этой точке дифференцируема. Например, функция y = | x | непрерывна для всех x (–< х < ), но в точке x = 0 не имеет производной. В этой точке не существует касательной к графику. Есть правая касательная и левая, но они не совпадают.

21 Правила нахожд. производ. суммы

Правило 1. Если функции у = f(х) и у = g(х) имеют, производную в точке х, то и их сумма имеет производную в точке х, причем производная суммы равна сумме производных:
(f(х) + 8(х))' =f (х)+ (х).
На практике это правило формулируют короче: производная суммы равна сумме производных.
Например,
Правило 2. Если функция у = f(х) имеет, производную в точке х, то и функция у = кf(х) имеет производную в точке х, причем:


На практике это правило формулируют короче: постоянный множитель можно вынести за знак производной. Например,


Правило 3. Если функции у=f(х) и у =g(х) имеют производную в точке х, то и их произведение имеет производную в точке х, причем:


На практике это правило формулируют так: производная произведения двух функций равна сумме двух слагаемых. Первое слагаемое есть произведение производной первой функции на вторую функцию, а второе слагаемое есть произведение первой функции на производную второй функции.
Например:
Правило 4. Если функции у = f(x) и у=g(х) имеют производную в то и частное имеет производную в точке х, причем:

таблица сложных производных


22 Диффир. функц. в точке

Функция y = f (x) называется дифференцируемой в точке x 0, если ее приращение Δ y (x 0,Δ x) может быть представлено в виде

Δ y (x 0,Δ x)= A Δ x + ox).

Главная линейная часть A Δ x приращения Δ y называется дифференциалом этой функции в точке x 0, соответствующим приращению Δ x, и обозначается символом dy (x 0,Δ x).

Для того, чтобы функция y = f (x) была дифференцируема в точке x 0, необходимо и достаточно, чтобы существовала производная f ′(x 0), при этом справедливо равенство A = f ′(x 0).

Выражение для дифференциала имеет вид

dy (x 0, dx)= f ′(x 0) dx,

где dxx.

23 Производ. Слож. Функц

Производная сложной функции. Производная функции, заданной параметрически

Пусть y – сложная функция x, т.е. y = f (u), u = g (x), или

Если g (x) и f (u) – дифференцируемые функции своих аргументов соответственно в точках x и u = g (x), то сложная функция также дифференцируема в точке x и находится по формуле

Производная функции заданной параметрически.

.

.

24 Произв и диффер. Высш.порядк

Пусть теперь производная -го порядка определена в некоторой окрестности точки и дифференцируема. Тогда

Если функция имеет в некоторой области D частную производную по одной из переменных, то названная производная, сама являясь функцией от может иметь в некоторой точке частные производные по той же или по любой другой переменной. Для исходной функции эти производные будут частными производными второго порядка (или вторыми частными производными).

или

или

Частная производная второго или более высокого порядка, взятая по различным переменным, называется смешанной частной производной. Например,

Дифференциалом порядка n, где n > 1, от функции в некоторой точке называется дифференциал в этой точке от дифференциала порядка (n — 1), то есть

.

Для функции, зависящей от одной переменной второй и третий дифференциалы выглядят так:

Отсюда можно вывести общий вид дифференциала n -го порядка от функции :

25 Теоремы Ферма, Ролля, Лангража

v Теорема Ферма: Пусть функция определена на и достигает своего наибольшего и наименьшего значения (M и m) в некоторой из . Если существует производная в , то она обязательно равна 0.

Доказательство: Существует . Возможны два случая:

1) , => , => .

2) , => , => .

Из 1) и 2) следует, что

v Теорема Ролля (о корнях производной): Пусть функция непрерывна на и дифференцируема на и на концах отрезка принимает одинаковые значения: . Тогда существует хотя бы одна точка из , производная в которой .

v Доказательство: Непрерывная достигает на M и m. Тогда возможны два случая:

1) , =>

2) наибольшее значение достигается внутри интервала по теореме Ферма.

v Теорема Лангража (о конечных приращениях): Пусть функция непрерывна на и дифференцируема на . Тогда существует хотя бы одна из , для которой выполняется следующее равенство: .

Доказательство: Введем функцию . (непрерывная на и дифференцируемая на ).

Функция удовлетворяет Теореме Ролля существует , для которой: , , , .

26 Правила Лопиталя.

Теорема Лопита́ля — метод нахождения пределов функций, раскрывающий неопределённости вида и . Обосновывающая метод теорема утверждает, что при некоторых условиях предел отношения функций равен пределу отношения их производных.

Теорема Лопиталя:

1. либо ;

2. и дифференцируемы в проколотой окрестности ;

3. в проколотой окрестности ;

4. существует ,

тогда существует .

Пределы также могут быть односторонними.

Формулировка правила Лопиталя cледующая:

Если , и если функции f(x) и g(x) – дифференцируемы в окрестности точки , то

27 Монотон.диффер.высш.функц.

Моното́нная фу́нкция — это функция, приращение которой не меняет знака, то есть либо всегда неотрицательное, либо всегда неположительное. Монотонная функция — это функция, меняющаяся в одном и том же направлении.

Пусть дана функция Тогда

· функция называется возраста́ющей на , если

.

· функция называется стро́го возраста́ющей на , если

.

· функция называется убыва́ющей на , если

.

· функция называется стро́го убыва́ющей на , если

.





Дата публикования: 2015-02-03; Прочитано: 4443 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...