Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Механические и физические приложения интегралов



Механические приложение определенного интеграла.

3.3.1 Работа переменной силы
3.3.2 Путь, пройденный телом.

.3.3 Давление жидкости на вертикальную пластинку
3.3.4 Вычисление статических моментов и координат центра тяжести плоской кривой
3.3.5Вычисление статических моментов и координат центра тяжести плоской фигуры

Работа переменной силы

Пусть материальная точка М перемещается вдоль оси Ох под действием переменной силы F = F(x), направленной параллельно этой оси. Работа, произведенная силой при перемещении точки М из положения х = а в положение х = b (a < b), находится по формуле (см. п. 36).

Пример 41.10 Какую работу нужно затратить, чтобы растянуть пружину на 0,05 м, если сила 100 Н растягивает пружину на 0,01 м?

Решение: По закону Гука упругая сила, растягивающая пружину, пропорциональна этому растяжению х, т. е. F = kх, где k — коэффициент пропорциональности. Согласно условию задачи, сила F = 100 Н растягивает пружину на х = 0,01 м; следовательно, 100 = k*0,01, откуда k = 10000; следовательно,F = 10000х.

Искомая работа на основании формулы (41.10) равна

Пример 41.11. Найти работу, которую необходимо затратить, чтобы выкачать через край жидкость из вертикального цилиндрического резервуара высоты Н м и радиусом основания R м.

Решение: Работа, затрачиваемая на поднятие тела весом р на высоту h, равна р•h. Но различные слои жидкости в резервуаре находятся на различных глубинах и высота поднятия (до края резервуара) различных слоев не одинакова.

Для решения поставленной задачи применим схему II (метод дифференциала). Введем систему координат так, как указано на рисунке 193.

1. Работа, затрачиваемая на выкачивание из резервуара слоя жидкости толщиной x (0!!!< x!!!< H), есть функция от х, т.е. А = А(х), где 0≤x≤H (А(0)=0, А(Н)=А0).

2. Находим главную часть приращения ΔА при изменении х на величину Δх = dx, т. е. находим дифференциал dA функции А(х).

Ввиду малости dx считаем, что «элементарный» слой жидкости находится на одной глубине х (от края резервуара) (см. рис. 193). Тогда dA = dp*x, где dp — вес этого слоя; он равен g *gdv, где g — ускорение свободного падения, g — плотность жидкости, dv — объем «элементарного» слоя жидкости (на рисунке он выделен), т. е. dp = ggdv. Объем указанного слоя жидкости, очевидно, равен πR2 dx, где dx — высота цилиндра (слоя), πR2 — площадь его основания, т. е. dv=πR2 dx.

Таким образом, dp=ggπR2 dx и dA = ggπR2dx*x.

3) Интегрируя полученное равенство в пределах от х = 0 до х = Н, находим

Путь, пройденный телом

Пусть материальная точка перемещается по прямой с переменной скоростью v=v(t). Найдем путь S, пройденный ею за промежуток времени от t1 до t2.

Решение: Из физического смысла производной известно, что при движении точки в одном направлении «скорость прямолинейного движения равна производной от пути по времени», т. е. . Отсюда следует, что dS = v(t)dt. Интегрируя полученное равенство в пределах от t1 до t2, получаем

Отметим, что эту же формулу можно получить, пользуясь схемой I или II применения определенного интеграла.

Пример 41.12. Найти путь, пройденный телом за 4 секунды от начала движения, если скорость тела v(t) = 10t + 2 (м/с).

Решение: Если v(t)=10t+2 (м/с), то путь, пройденный телом от начала движения (t=0) до конца 4-й секунды, равен

Давление жидкости на вертикальную пластинку
По закону Паскаля давление жидкости на горизонтальную пластину равно весу столба этой жидкости, имеющего основанием пластинку, а вы­сотой — глубину ее погружения от свободной поверхности жидкости, т. е. Р = g , где g ускорение свободного падения, — плотность жидкости, S — площадь пластинки, h глубина ее погружения.
По этой формуле нельзя искать давление жидкости на вертикально погруженную пластинку, так как ее разные точки лежат на разных глу­бинах.
Пусть в жидкость погружена вертикально пластина, ограниченная ли­ниями х = а, х = b, y и y . Для нахождения давления Р жидкости на эту пластину применим схему II (метод дифференциала).

1. Пусть часть искомой величины Р есть функция от х: р = р(х), т. е. р = р(х) — да­вление на часть пластины, соответствующее от­резку [а; b] значений переменной х, где х [a; b] (р(a) = 0, р(b) = Р).

Рис 14

1. Дадим аргументу х приращение Δx = d х. Функция р(х) получит приращение Δр (на рисун­ке — полоска-слой толщины dх). Найдем диффе­ренциал d р этой функции. Ввиду малости бу­дем приближенно считать полоску прямоуголь­ником, все точки которого находятся на одной глубине х, т. е. пластинка эта — горизонталь­ная.
Тогда по закону Паскаля dр = . 3. Интегрируя полученное равенство в пределах от х = а до х = b, получим
P = или P =

Вычисление статических моментов и координат центра тяжести плоской кривой
Пусть на плоскости Оху задана система материальных точек М ), М22;y ), …, M (x ;y ) соответственное массами m ,m , …, m„.
Статическим моментом SХ системы материальных точек относи­тельно оси Ох называется сумма произведений масс этих точек на их ординаты (т. е. на расстояния этих точек от оси Ох):

Аналогично определяется статистический момент S этой системы относительно оси Oy: S = .
Если массы распределены непрерывным образом вдоль некоторой кри­вой, то для выражения статического момента понадобится интегрирова­ние.
Пусть у =f/(х) (a ≤ х ≤ b ) — это уравнение материальной кривой АВ. Будем считать ее однородной с постоянной линейной плотностью ( = const).
Для произвольного х [а;b] на кривой АВ найдется точка с коорди­натами (х; у). Выделим на кривой элементарный участок длины dl, содер­жащий точку (х;у). Тогда масса этого участка равна . Примем этот участок dl приближенно за точку, отстоящую от оси Ох на расстоянии у. Тогда дифференциал статического момента dS (“элементарный момент”) будет равен , т.е. .
Отсюда следует, что статический момент S Х кри­вой АВ относительно оси Ох равен

Аналогично находим S :

Статические моменты S Х и S У кривой позволя­ют легко установить положение ее центра тяжести (центра масс).
Центром тяжести материальной плоской кривой у = f(х), х 6 [а; b] называется точка плоскости, обладающая следующим свойством: если в этой точке сосредоточить всю массу т заданной кривой, то статический момент этой точки относительно любой координатной оси будет равен ста­тическому моменту всей кривой у = f(х) относительно той же оси. Обо­значим через С(хсс) центр тяжести кривой АВ.
Из определения центра тяжести следуют равенства и или и . Отсюда ,
или

42 Определённый интеграл в экономике

интегральное исчисление дает богатый математический аппарат для моделирования и исследования процессов, происходящих в экономике.

Вопрос 43прос на данный товар (D–demand) – сложившаяся на определенный момент времени зависимость между ценой товара и объемом его покупки. Спрос на отдельный товар графически изображается в виде кривой с отрицательным наклоном, отражающей взаимосвязь между ценой P (price) единицы этого товара и количеством товара Q (quantity), которое потребители готовы купить при каждой заданной цене. Отрицательный наклон кривой спроса имеет очевидное объяснение: чем дороже товар, тем меньше количество товара, которое покупатели готовы купить, и наоборот

Аналогично определяется и другое ключевое понятие экономической теории – предложение (S–supply) товара: сложившаяся на определенный момент времени зависимость между ценой товара и количеством товара, предлагаемого к продаже. Предложение отдельного товара изображается графически в виде кривой с положительным наклоном, отражающей взаимосвязь между ценой единицы этого товара P и количеством товара Q, которое потребители готовы продать при каждой цене.

Отметим, что экономисты сочли удобным изображать аргумент (цену) по оси ординат, а зависимую переменную (количество товара) по оси абсцисс. Поэтому графики функций спроса и предложения выглядят следующим образом (рис. 1).

И, наконец, введем еще одно понятие, играющее большую роль в моделировании экономических процессов – рыночное равновесие (equilibrium). Состояние равновесия характеризуют такие цена и количество, при которых объем спроса совпадает с величиной предложения, а графически рыночное равновесие изображается точкой пересечения кривых спроса и предложения (рис. 2), E*(p*; q*) – точка равновесия2.

В дальнейшем для удобства анализа мы будем рассматривать не зависимость Q = f(P), а обратные функции спроса и предложения, характеризующие зависимость P = f(Q), тогда аргумент и значение функции графически будут изображаться привычным для нас образом.

Перейдем теперь к рассмотрению приложений интегрального анализа для определения потребительского излишка. Для этого изобразим на графике обратную функцию спроса P = f(Q). Допустим, что рыночное равновесие установилось в точке E*(q*; p*) (кривая предложения на графике отсутствует для удобства дальнейшего анализа, рис. 3).

Если покупатель приобретает товар в количестве Q* по равновесной цене P*, то очевидно, что общие расходы на покупку такого товара составят P*Q*, что равно площади заштрихованной фигуры A (рис. 4).

Но предположим теперь, что товар в количестве Q* продается продавцами не сразу, а поступает на рынок небольшими партиями њ Q. Именно такое допущение вместе с предположением о непрерывности функции спроса и предложения является основным при выводе формулы для расчета потребительского излишка (см. [2–4]). Отметим, что данное допущение вполне оправдано, потому что такая схема реализации товара довольно распространена на практике и вытекает из цели продавца поддерживать цену на товар как можно выше.

Тогда получим, что сначала предлагается товар в количестве Q1 = D Q (рис. 5), который продается по цене P1 = f(Q1). Так как по предположению величина њ Q мала, то можно считать, что вся первая партия товара реализуется по цене P1, при этом затраты покупателя на покупку такого количества товара составят P1D Q, что соответствует площади заштрихованного прямоугольника S1 (рис. 5).

Далее на рынок поступает вторая партия товара в том же количестве, которая продается по цене P2 = f(Q2), где Q2 = Q1 + D Q – общее количество реализованной продукции, а затраты покупателя на покупку второй партии составят P2D Q, что соответствует площади прямоугольника S2.

Продолжим процесс до тех пор, пока не дойдем до равновесного количества товара Q* = Qn. Тогда становится ясно, какой должна быть величина D Q для того, чтобы процесс продажи товара закончился в точке Q*:

В результате получим, что цена n-й партии товара Pn = f(Qn) = f(Q*) = P*, а затраты потребителей на покупку этой последней партии товара составят PnD Q, или площадь прямоугольника Sn.

Таким образом, мы получим, что суммарные затраты потребителей при покупке товара мелкими партиями D Q равны

Так как величина D Q очень мала, а функция f(Q) непрерывна, то заключаем, что приблизительно равна площади фигуры B (рис. 6), которая, как известно, при малых приращениях аргумента D Q равна определенному интегралу от обратной функции спроса при изменении аргумента от 0 до Q*, т. е. в итоге получим, что

Вспомнив, что каждая точка на кривой спроса Pi = f(Qi) (i = 1, 2,..., k) показывает, какую сумму потребитель готов заплатить за покупку дополнительной единицы продукта, получим, что площадь фигуры B соответствует общей денежной сумме, которую потребитель готов потратить на покупку Q* единиц товара. Разность между площадью фигуры B и площадью прямоугольника A есть потребительский излишек при покупке данного товара – превышение общей стоимости, которую потребитель готов уплатить за все единицы товара, над его реальными расходами на их приобретение (площадь заштрихованной фигуры на рисунке 7).

Таким образом, потребительский излишек можно посчитать по следующей формуле

Задача 2. Известно, что спрос на некоторый товар описывается функцией а предложение данного товара характеризуется функцией q = 500p. Найдите величину излишка потребителя при покупке данного товара.

Решение. Для расчета излишка потребителя сначала определим параметры рыночного равновесия (p*; q*). Для этого решим систему уравнений

Таким образом, p* = 2, q* = 1000.

Запишем формулу для вычисления потребительского излишка (1), где f(q) – функция, обратная функции

Отсюда





Дата публикования: 2015-02-03; Прочитано: 2106 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.011 с)...