Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Обозначения



Тот факт, что последовательность сходится к числу обозначается одним из следующих способов:

Определение. Последовательность называется сходящейся, если у нее существует конечный предел (т.е. существует и ).

Рассмотрим свойства этих последовательностей.
1. Для того, чтобы последовательность была сходящейся, необходимо и достаточно, чтобы ее можно было представить в виде , где , а - б.м.п.

Необходимость. Пусть . Это значит, что

Обозначим . Тогда и

т.е. б.м.п.

Достаточность. Пусть , где а - б.м.п., т.е. .

Но так как , то , т.е. .

Это свойство позволяет почти все остальные свойства свести к свойствам б.м.п.

2. Сходящаяся последовательность ограничена.

Доказательство. , где б.м.п. В силу этого ограничена, т.е. .

Но тогда , т.е. ограничена.

3. Если и сходящиеся последовательности, то тоже сходящаяся последовательность и .

Доказательство:

сходящаяся => , где б.м.п.

сходящаяся=> , где б.м.п.

Но тогда .

Но по свойствам б.м.п. есть б.м.п. и поэтому есть сходящаяся последовательность и
4. Если сходящаяся последовательность, то тоже сходится и

сходится => , где б.м.п.

Но тогда и, по свойству б.м.п. есть тоже б.м.п. Поэтому сходится и
5. Если и сходящиеся последовательности, то тоже сходящаяся последовательность и
Доказательство:

сходится=> , где б.м.п.

сходится => , где б.м.п.

Но тогда . Но, по свойствам б.м.п., , , есть б.м.п. их сумма есть также б.м.п. и есть сходящаяся последовательность и .
6. Если , то начиная с некоторого , последовательность ограничена.
Доказательство:

сходится => .

Т.к. то возьмем . Тогда

. Но тогда выполняется неравенство

.
Сравнивая начало и конец получим, что

и , т.е. при последовательность ограничена.
7. Если и сходящиеся последовательности, причем . Тогда есть также сходящаяся последовательность и

Доказательство:

сходится => , где б.м.п.

сходится => , где б.м.п.

Тогда

.

Вспомним, что . Тогда есть б.м.п., есть б.м.п и, т.к. ограниченна, то есть тоже б.м.п. Итак,

б.м.п. и поэтому

16 Вопрос: Понятие непрерывности отношения к функциям заданным на непрерывном множестве.





Дата публикования: 2015-02-03; Прочитано: 152 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...