Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Квадратная матрица и ее определитель. Особенная и неособенная квадратные матрицы. Присоединенная матрица. Матрица, обратная данной, и алгоритм ее вычисления



Обратная матрица

Для каждого числа существует обратное число такое, что произведение . Для квадратных матриц тоже вводится аналогичное понятие.

Определение. Матрица называется обратной по отношению к квадратной матрице , если при умножении этой матрицы на данную как справа, так и слева получается единичная матрица:

.

Только квадратная матрица может иметь обратную, однако не каждая квадратная матрица имеет обратную.

Определение. Матрица является невырожденной (неособенной), если , в противном случае при матрица называется вырожденной (особенной).

Теорема (необходимое и достаточное условие существования обратной матрицы). Обратная матрица существует (и единственна) тогда и только тогда, когда исходная матрица является невырожденной (неособенной) и вычисляется по формуле

,

где - присоединенная матрица, состоящая из алгебраических дополнений элементов транспонированной матрицы, т.е. .

Необходимость. Пусть матрица имеет обратную , т.е. . По свойству 10 определителей имеем: , т.е. и .

Достаточность. Пусть . Рассмотрим квадратную матрицу n-го порядка , называемую присоединенной, элементы которой являются алгебраическими дополнениями элементов матрицы , транспонированной к . Тогда элементы произведения матриц определяются по правилу умножения матриц. Поэтому матрица В является диагональной, элементы ее главной диагонали равны определителю исходной матрицы. А произведение на равно той же матрице В: .

Единственность обратной матрицы. Предположим, что существуют еще матрицы и такие, что и , где матрица получена по формуле и выполняются равенства и . Тогда, умножая на слева первое из них, получаем: , откуда , т.е. . Аналогично, умножая второе равенство на справа, получаем . Единственность доказана.





Дата публикования: 2015-02-03; Прочитано: 864 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...