![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Формулы (1), (2), (3) и (4) называются формулами численного дифференцирования. При этом формула (1) - определяет правую разностную производную и имеет порядок точности , формула (2) – определяет левую разностную производную и имеет порядок точности
, формула (3) - определяет центральную разностную производную первого порядка и имеет порядок точности
, формула (4) - определяет центральную разностную производную вто рого порядка и имеет порядок точности
.
35-36.Численные методы решения задачи Коши.
Задача для ОДУ первого порядка для функции одной переменной ставится следующим образом
(5) Более общая постановка задачи Коши для дифференциального уравнения n -го порядка
(6)
Здесь - заданные числа (начальные условия). Задача (6) с помощью замены переменных
,
. сводится к системе дифференциальных уравнений первого порядка:
(7)
Систему (7) можно переписать в векторном виде: , где (8)
,
,
. Система (8) исследуется и решается аналогично одномерной задаче Коши (5), поэтому важно изучить, прежде всего, численные методы решения задачи (5). В курсе математического анализа формулируется и доказывается теорема существования и единственности решения задачи Коши. Отметим, что для выполнения теоремы необходимо и достаточно, чтобы функция
имела непрерывные частные производные в замкнутой ограниченной области
на плоскости
. Будем искать решение задачи (5) в прямоугольниках
Введем сетку на оси
,
Простейший итерационный процесс решения (5) на сетке
получается, если аппроксимировать производную
на сетке правой конечной разностью. Обозначая приближенное решение на сетке
, получим
или
(9)
Итерационная процедура (9) называется “метод Эйлера” (или “метод ломаных”). Дадим графическую иллюстрацию метода.
![]() |
Оценка погрешности метода Эйлера. Будем считать, что ошибка округления имеет порядок не меньший, чем . Тогда из (9) следует:
(10)Разложим точное решение
задачи (5) в точке
с такой же точностью:
(11)Вычтем(11) из (10) Þ
(12)
где В силу условий теоремы существования и единственности частные производные
ограничены в прямоугольнике
:
Обозначим
и оценим (12) по модулю
(13)
по условию. Обозначим
(14)
Теорема 2. Для метода Эйлера имеет место следующая оценка погрешности:
(15)
Из (13) следует (рекурсия назад)
Используя алгебраическое тождество получаем
(16)
(В последнем неравенстве использовано свойство второго замечательного предела) Учитывая, что
получим
, т.е. оценку (15).
Замечание. Из соотношения (16) следует, что 1. Ошибка растет с номером шага k. 2. Порядок ошибки в методе Эйлера .
37-39.Методы Рунге-Кутта.
Методы Рунге-Кутта - это группа итерационных методов решения задачи Коши (4), характеризуемая следующими условиями: 1)Это одношаговые методы, т.е. при переходе из точки в точку
используется лишь информация о предыдущей точке
. Этому условию соответствует такая общая запись итерационной процедуры
, (17) где
выражается через значения функции
в точке
или близким к ней (сдвинутым на долю шага). 2. Процедура (16) согласуется с рядом Тейлора вплоть до членов порядка
, где p -порядок метода. 3. Метод не использует производных от
, а требует только вычисления функции в различных точках сетки, причем число вычислений функции - минимально возможное для данного порядка. Заметим, что метод Эйлера является частным случаем метода Рунге-Кутта, имеющий наименьший первый порядок точности. Рассмотрим один из примеров повышения порядка точности метода Рунге-Кутта (16) до второго порядка. Представим
в виде следующей линейной комбинации
. Разложим функцию
в точке
в ряд Тейлора до членов первого порядка включительно
. Подставляя эти формулы в (16), получим:
. (18) (все входящие в правую часть функции берутся в точке
) Аналогичное разложение по Тейлору напишем для функции
, используя уравнение
. (19) Требуя совпадения коэффициентов разложений (18) и (19) при одинаковых степенях h, получим систему уравнений для неизвестных коэффициентов
:
(20)
Система (20) недоопределена. Поэтому один из коэффициентов можно задать произвольно. Например, положим . Решая (20), получим
. Итерационная процедура (17) приобретает вид
. (21)
Учитывая результат теоремы 2, заключаем, что точность этого метода , т.е. данный метод - второго порядка.
Рассмотрим некоторые частные случаи процедуры (21).
Отбрасывая погрешность, получаем
. (22)
Полученный метод Рунге-Кутта носит название “предиктор-корректор”. Чтобы прояснить смысл этого названия разобьем процедуру (22) на два этапа:
На первом этапе “предсказываем” значение по методу Эйлера. На втором этапе это значение корректируется путем усреднения угловых коэффициентов в точках
и
. За счет коррекции, точность данного метода и повышается на порядок по сравнению с методом Эйлера.
Согласно (21), получаем
. (23)
Обозначим
.
Тогда (23) разбивается на два этапа:
На первом этапе находим - прогнозируемое значение на половинном шаге от точки
по методу Эйлера.
Вычисляем наклон интегральной кривой в точке , и на втором этапе, двигаясь по касательной с данным угловым коэффициентом из точки (
) в точку (
), получаем окончательно
Полученный метод носит название “модифицированный метод Эйлера”.
Дата публикования: 2015-01-26; Прочитано: 171 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!