Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Простейшие следствия из определений



Следствие 1. Критерий Сильвестра: все ведущие угловые миноры матрицы А положительны.

Следствие 2. , причем . следует из критерия Сильвестра

Следствие 3. все собственные значения . Пусть - собственное значение, соответствующее собственному вектору x.

По условию результат.

Следствие 4. Пусть А – вещественная матрица матрица Имеем: {по свойству скалярного произведения}

Следствие 5. Сингулярные числа вещественной матрицы А – неотрицательны Следует из С3 и С4.

Следствие 6. Пусть А – вещественная матрица .

Имеем:

Следствие 7. Если А – невырожденная матрица собственные значения матриц А и A-1 взаимообратны.

Пусть результат.

Обусловленность матриц и систем уравнений. Пусть дана система ЛАУ с невырожденной матрицей А : Ax = b, (6)и пусть вектор правой части b вычисляется с ошибкой .Заменим правую часть “возмущенным” значением , тогда решение приобретет ошибку и система примет вид:

. (7) Оценим относительную ошибку решения в зависимости от относительной

величины возмущения правой части . Из (6) и (7) следует: или

{согласованность матриц} (8) С другой стороны, из (6) следует подставим в (8) .

(9)

Определение 6. Число называется числом обусловленности матрицы А. Таким образом, из (9) следует, что максимальная относительная ошибка решения пропорциональна числу обусловленности матрицы А: .

Если (система уравнений плохо обусловлена), то небольшие погрешности вычисления правой части (небольшие “возмущения”) могут приводить к весьма большим отклонениям от точного решения.

Заметим, что это явление не связано с явлением неустойчивости (т.е. накоплением ошибок при вычислениях), а является следствием специфического свойства матрицы А и наблюдается даже в том случае, когда все вычисления делаются абсолютно точно, а возмущение правой части вызвано неточностями начальных данных при формировании системы. На семинаре и лабораторной работе будут рассмотрены примеры плохо обусловленных систем.


Итерационные методы решения систем ЛАУ.Рассмотрим вначале систему ЛАУ вида x = Tx + d, , T - матрица (10) Назовем эту систему системой “второго рода”, в отличии от вида системы (1) – системы “первого рода”. Систему второго рода (10) естественно пытаться решать итерационным методом

, k =0,1,….. (11) В этом методе используются лишь операции сложения и умножения, и не используется операция деления – наиболее опасная для накопления ошибок. Очевидно, что оператор Т - линейный и отображает Rn в себя. Тогда согласно У2 из лекции 10, если для какой-либо из матричных норм выполняются условия теоремы 1 существует единственная неподвижная точка x* оператора Т, удовлетворяющая системе x *= Tx *+ d, (12) причем процедура (11) сходится к точке x* со скоростью геометрической прогрессии. Действительно, из (11) и (12) xk+1 - x* = T (xk - x*)={продолжая рекурсию}=…= Tk (x0 - x*) Оценивая по норме, получаем: {согласованность+мультипликативность матричной нормы} при результат: сходимость с линейной скоростью.


Стационарные итерационные процедуры. Теоремы о сходимости.

Пусть задана система ЛАУ общего вида (первого рода): Ax=b; x,b Rn, . (1) Требуется привести данную систему к виду x=Tx+d (2) с матрицей (оператором) Т, удовлетворяющей условию в какой либо матричной норме. Рассмотрим простейший прием такого преобразования. x=x-H(Ax-b), (3)

где Н- некоторая невырожденная матрица. Из (3) следует, что x=Tx+d, где (4) T=E-HA, d=Hb.





Дата публикования: 2015-01-26; Прочитано: 184 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...