Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Теорема о единственности предела сходящейся числовой последовательности



Определение: Последовательность может иметь только один предел.

Доказательство: Предположим противное, т.е. пусть последовательность { xn } такая, что

lim n→∞xn=a и lim n→∞xn=b и a <> b.

Тогда поскольку число a – предел последовательности, то должно выполняться неравенство:

| xn - a | < ε и | xn - b | < ε

Очевидно, что между двумя неравными числами (a <> b) находится бесконечно много других чисел. Поэтому всегда можно выбрать такое число ε > 0, что ε-окрестность точки a не будет пересекаться с ε-окрестностью точки b.

(a – ε, a + ε) (b – ε, b + ε ) = (пустое_множество)

Поскольку число a является пределом последовательности { xn }, то начиная с некоторого номера n > N все члены этой последовательности попадут в ε-окрестность точки a, а вне этой окрестности может оказаться только конечное число членов: x1, x2…xn. Но тогда в ε-окрестность точки b может попасть только что-то из чисел x1, x2…xn и не больше, а это противоречит тому, что число b предел { xn } (Если b – предел, то в ε-окрестность точки b должно попадать не меньше, чем в ε-окрестность точки a). Следовательно, предположение о том, что a <> b не верно. Из этого следует, что a = b, а значит, предел единственен. Что и требовалось доказать.

Ограниченные и неограниченные числовые последовательности. Привести примеры.

Доказать необходимое условие сходимости числовой последовательности.





Дата публикования: 2015-01-26; Прочитано: 226 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...