Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Однородные дифференциальные уравнения первого порядка



Дифференциальное уравнение вида:

где и – однородные функции одинакового измерения, называется однородным дифференциальным уравнением первого порядка. Данное уравнение можно привести к виду где – однородная функция нулевого измерения. С помощью замены где – новая неизвестная функция, рассматриваемое уравнение сводится к уравнению с разделяющимися переменными.

Пример 8.2. Решить дифференциальное уравнение:

Решение. Сделаем замену и получим:

;

Сделав обратную замену получим общий интеграл:





Дата публикования: 2015-01-10; Прочитано: 275 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.005 с)...