![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
|
До сих пор при анализе сходимости несобственных интегралов мы предполагали, что подинтегральная функция принимает только положительные значения. Откажемся от этого предположения. Будем исследовать сходимость несобственных интегралов первого рода вида
, где
может принимать значения любого знака. Полученные результаты переносятся по аналогии на остальные несобственные интегралы первого и второго рода.
Интеграл
называется абсолютно сходящимся, если сходится несобственный интеграл
.
Теорема. Если интеграл
абсолютно сходится, то он сходится.
Доказательство. Введем в рассмотрение две вспомогательные функции
. Эти функции принимают только положительные значения. Кроме того,
. По первому признаку сравнения из абсолютной сходимости интеграла
, т.е. из сходимости интеграла
следует сходимость интегралов
,
. Тогда сходится интеграл
. Теорема доказана.
Пример.
абсолютно сходится, так как
а интеграл
сходится.
Дата публикования: 2015-01-10; Прочитано: 326 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!
