![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
|
Пусть отрезок
числовой оси неограничен. Это возможно в трех случаях:
. Определим несобственные интегралы как пределы
,
,
. В последнем интеграле a и b независимо друг от друга стремятся к
. Если
, то предел в правой части последнего равенства называется главным значением несобственного интеграла.
Если эти пределы существуют и конечны, то несобственные интегралы называются сходящимися. Если предел не существует или бесконечен, то такой несобственный интеграл называется расходящимся.
Если сходятся интегралы от функций
, то сходятся интегралы от функций
. Это следует из теорем о пределах.
Пример.
, интеграл сходится.
Пример.
, интеграл расходится.
Пример.
сходится при
и расходится при
. Проверьте это.
Рассмотрим интеграл Дирихле
.
.
При
, интеграл расходится.
Итак, несобственный интеграл Дирихле первого рода
сходится при
расходится при 
Дата публикования: 2015-01-10; Прочитано: 445 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!
